RIPS

Overview Concept Configuration Technical Information Publication list/Link

Technical Information - Beam Intensity

Typical primary beams and RI-beam production

Typical primary beams accelerated with K=540 RIKEN Ring Cyclotron (RRC) are listed in this page. The energies and intensities shown here are actually obtained ones in the RRC acceleration in combination with the injector indicated in the list. For each primary beam, the production yields of RI beams in the projectile-fragmentation reactions and their purity obtained with RIPS are estimated based on EPAX2, in which the following experimental situations are assumed.
  • target: Be, whose thickness is set to give a maximum yield for each RI beam
  • angular acceptance: 60mrad x 60mrad
  • momentum acceptance: 6 %
  • wedge-shaped degrader: thickness are set to give d/R = 0.25 commonly (not always realistic)
  • F2 slit: opening widths are set to be a FWHM of each RI-beam profile

These calculations give guidelines for the production of RI beams of interest. Although poor purity might be estimated, they can be drastically improved in some cases by carefully performing the isotope-separation procedure in actual experiments, since these calculations were carried out in a simplified way. The RF deflector equipped upstream of F2 can also purify RI beams additionally.

 

Primary beam Energy Intensity Injector Secondary beams
Yield & Purity
4He 135 AMeV 700 pnA AVF Table(Y&P) Fig(Y) Fig(P)
11B 70 AMeV 300 pnA AVF Table(Y&P) Fig(Y) Fig(P)
12C 70 AMeV 400 pnA AVF Table(Y&P) Fig(Y) Fig(P)
12C 92 AMeV 300 pnA AVF Table(Y&P) Fig(Y) Fig(P)
13C 100 AMeV 300 pnA AVF Table(Y&P) Fig(Y) Fig(P)
13C 70 AMeV 300 pnA AVF Table(Y&P) Fig(Y) Fig(P)
14N 135 AMeV 400 pnA AVF Table(Y&P) Fig(Y) Fig(P)
15N 70 AMeV 40 pnA AVF Table(Y&P) Fig(Y) Fig(P)
16O 135 AMeV 500 pnA AVF Table(Y&P) Fig(Y) Fig(P)
18O 100 AMeV 500 pnA AVF Table(Y&P) Fig(Y) Fig(P)
18O 70 AMeV 200 pnA AVF Table(Y&P) Fig(Y) Fig(P)
20Ne 135 AMeV 180 pnA AVF Table(Y&P) Fig(Y) Fig(P)
20Ne 70 AMeV 60 pnA AVF Table(Y&P) Fig(Y) Fig(P)
22Ne 100 AMeV 170 pnA AVF Table(Y&P) Fig(Y) Fig(P)
22Ne 110 AMeV 360 pnA AVF Table(Y&P) Fig(Y) Fig(P)
24Mg 100 AMeV 50 pnA AVF Table(Y&P) Fig(Y) Fig(P)
28Si 100 AMeV 25 pnA AVF Table(Y&P) Fig(Y) Fig(P)
28Si 135 AMeV 50 pnA AVF Table(Y&P) Fig(Y) Fig(P)
36Ar 115 AMeV 40 pnA AVF Table(Y&P) Fig(Y) Fig(P)
40Ar 63 AMeV 800 pnA RILAC Table(Y&P) Fig(Y) Fig(P)
40Ar 95 AMeV 80 pnA AVF Table(Y&P) Fig(Y) Fig(P)
40Ca 100 AMeV 50 pnA AVF Table(Y&P) Fig(Y) Fig(P)
48Ca 63 AMeV 100 pnA RILAC Table(Y&P) Fig(Y) Fig(P)
48Ca 70 AMeV 4.5 pnA AVF Table(Y&P) Fig(Y) Fig(P)
50Cr 80 AMeV 6 pnA AVF Table(Y&P) Fig(Y) Fig(P)
56Fe 90 AMeV 8 pnA AVF Table(Y&P) Fig(Y) Fig(P)
59Co 80 AMeV 17 pnA AVF Table(Y&P) Fig(Y) Fig(P)
58Ni 95 AMeV 6 pnA AVF Table(Y&P) Fig(Y) Fig(P)
86Kr 63 AMeV 80 pnA RILAC Table(Y&P) Fig(Y) Fig(P)
86Kr 66 AMeV 1 pnA AVF Table(Y&P) Fig(Y) Fig(P)

 

Copyright (C) Nishina Center for Accelerator-Based Science. All Rights Reserved.