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はじめに
QCDから原子核への道
QCD = クォーク + グルーオン
カラー電荷によるゲージ相互作用
エネルギースケール: ΛQCD ~200 MeV, mu,d ~ 5 MeV

ハドロン: メソン, バリオン, 共鳴
強い相互作用 (no color), 対称性の破れ
　Mh ~700-1000 MeV, fπ~90 MeV

原子核 = 核子 + . . . （不純物？）
核力 (特異な性質), 強い縮退
　B/A ~ 8 MeV, Ex ~ 0.1 MeV
　QCD/hadron からはかなり遠い 3



はじめに
原子核にQCDは必要か?
QCD/ハドロン
核子の大きさ　RN ~ 0.8-0.9 fm (charge rms)
σ(string tension) ~ 1GeV/fm

原子核
核力の到達距離 ~ 1.4 fm
核子間距離 ~ 2 fm

長さのスケールでは共存しているのに、なぜエネルギースケールが
違うのか？
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核力の特異性
核力 ＝ OPE + 中距離引力 + 短距離斥力
引力と斥力 ~  数100 MeV
　⇔　重陽子の束縛エネルギー　2 MeV
OBEの到達距離 ~ 1 fm
　⇔　重陽子のサイズ ~ 4 fm

短距離核力　　< 0.5 fm
　核子の励起状態　300 ~ 500 MeV
　斥力芯の強さ　500 ~ 1000 MeV
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他のバリオン間の力も同じ性質を持つのか？
　中間子交換力はSU(3)対称性を用いて一般化  
　　　OBEP　ex. Nijmegenポテンシャル
　短距離斥力は共通なのか？　起源は？ 

短距離斥力の起源をクォーク構造に求めて
　クォーククラスター模型  Oka, Yazaki (1980)
　核力はカラー分極を誘起するか？ 

原子核内でクォーク・カラーが見られるか？
　EMC効果 (1983)　10%程度の効果
　核媒質中でのハドロン　カイラル対称性が回復すると？
　　　color-transparency, 重イオン

核子
核子
1.7fm
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ハドロン物理の生い立ち
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中性子の発見（1932）

pionの予言、発見（1935）

原子核 = 陽子+中性子

核力 = 中間子交換
　核子と中間子は別物

原子核

ハドロン = バリオン + メソン
strangenessの発見（1947） SU(3), クォーク (1964)

PCAC (1960) カイラル対称性の自発的破れ

ハドロン
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ゲージ理論（1954）による統一

標準理論

QCD (1973) 誕生
charmの発見（1974）

ハドロン物理の生い立ち

クォーク模型

QCDによれば、. . .  (1974- )
しかし、QCDは解けない。 . . .
3つの論文



Quark Models from QCD

E. Eichten, et al., Phys. Rev. Lett. 34 (1975) 369

De Rujula, Georgi, Glashow, Phys. Rev. D12 (1975) 147

A. Chodos, et al., Phys. Rev. D9 (1974) 3471
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Heavy quarks 

quenched      r0: Sommer scale

Cornell potential (Eichten et al.)

 

quarkonium potential

  Lattice QCD: Wilson loop 

G.S. Bali / Phys. Rep. 343 (2001) 1
quark antiquark

charmonium



refined potential models

S.N. Mukherjee, et al., Phys. Rep. 231 (1993)
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Heavy quarks

charmonium                                bottomium



QCD-motivated Quark Model

De Rujula, Georgi, Glashow, Phys. Rev. D12 (1975) 147
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Color-Magnetic interaction

qq

s1 s2 vector part of gluon exchange
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Single particle motion

(s1/2)
3          J = 1/2   8

                J = 3/2  10

hyperfine interaction

(s1/2)
3
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QCD-motivated Quark Model



HF interaction in the baryon

 N-$ mass splitting (300 MeV) ( $ss ~ 50 MeV

 !)" mass splitting  (~77 MeV) from SU(3) breaking

  

                 

! : (ud)I =0,S =0 s 50MeV x [ (-3) + 0 * * ]

" : (ud)I =1,S =1 s 50MeV x [ 1 + (-4) * * ]

+ * - factor:  s-u, s-d HF interaction is weaker than u-d.

 for * = 3/5 ! " ) ! = (8/15) x150 MeV = 80 MeV

QCD-motivated Quark Model

50 MeV
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MIT bag model,  A. Chodos et al.

Confinement is achieived by the bag boundary condition. 

A quark has a single particle energy due to localization.

The bag has a volume energy to stabilize hadrons.

The confined gluon field has color-magnetic energy.

QCD-motivated Quark Model
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Bag: boundary condition

       (potential wall)

The MIT bag and the DGG give the same spectrum for the 

ground state.

mq ~ 0



Isgur-Karl model
N. Isgur, G. Karl        Shell model of hadrons

P Wave Baryons in the Quark Model: Phys. Rev. D18 (1978) 4187

Positive Parity Excited Baryons in a Quark Model with Hyperfine 
Interactions: Phys. Rev. D19 (1979) 2653

And many others
potential models
    confinement   potential, string, flux tube, . .
    spin-flavor-color dependent terms
    relativised models
bag models
    can describe excited states?  deformed, oscillating
    soliton-like bags

The right degrees of freedom (except valence quarks)?
   gluon, bag, string, soliton, . . .

QCD-motivated Quark Model

16



H dibaryon : S = –2, B = 2

 is predicted from the CMI strong attraction
   a rough estimate:

       MH = 4 mq + 2 ms + <Vcm>H = 360x4 + 540x2 – 450 " 2070 MeV   

   !! threshold 2230 MeV 

+ R.L. Jaffe, Perhaps a Stable Dihyperon: PRL 38 (1977) 195

+ Oka, Shimizu, Yazaki, 

  The Dihyperon state in the quark cluster model, PL B130 (1983) 365

+ 20-year searches were NOT successful.  What’s wrong?

Quark model の危機
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Instanton-induced-interaction (III)
aka Kobayashi-Maskawa-’t Hooft (KMT)

III (2-body)
spin-dependent attraction

  

III (3-body)
3-body repulsion  flavor singlet (u-d-s) 

 
      repulsive for the flavor-singlet H dibaryon

u

d

s

u

d

s

u

d

s

E.V. Shuryak, J.L. Rosner, Phys. Lett. B218 (1989) 72

M. Oka, S. Takeuchi, Phys. Rev. Lett. 63 (1989)1780

Quark model の危機
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Quark model の危機
H dibaryon
　なぜ存在しないのか　
　インスタントン、カイラルクォーク模型

Exotic quarkonium
　ポテンシャル模型では説明できない状態：X, Y, Z, Ds  ???
　　4-quark states, hadron molecules?

pentaquark　why?
　Bag模型、ポテンシャル模型も（あまり）うまくいかない
　幅が狭い
　カイラル対称性？　カイラルクォーク模型？
Oset
   ハドロン至上主義 !?
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QCDは “quark model” を救えるか
なぜ “quark model” が必要か
　自由度の数が正しい（と思われる）
　 gluonがあらわに必要なハドロンが見つからない
　　　（クォークのカラーだけで白色）
　 Exotic (multi-quark) hadron を「理解」する

QCDに立ち返って“quark model”を精査する
“constituent quark”はQCDの”quark”と何が違うのか
ハドロン中のクォークの数とは?

QCDを直接用いて、原子核にアプローチする

21
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Quarks in QCD

QCD Lagrangian

Quark masses and scale of QCD

 1 10 100 1 10 100

     MeV        GeV

  u  d!         s       c    b! !  t

mq

!
QCD

light quarks  heavy quarks
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Quarks in QCD

How quarks get the “constituent” masses?

by chiral symmetry breaking

Dynamical model of elementary particles based on an analogy with 

superconductivity 1:  

Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122 (1961) 345

Chiral Quarks and the Nonrelativistic Quark Model:

A. Manohar, H. Georgi, Nucl. Phys. B234 (1984) 189

0

effective mass

gluon

dressed quark propagator

constiuent quark masses:   Mu,d ! 350 MeV,  Ms ! 550 MeV

Dyson-Schwinger equation

=
-1 -1

+SF

SF+

23



How shall we determine the number of constituent quarks in 

hadrons?

Which hadrons are exotic or do contain exotic multi-quark 

components?

The light scalar mesons

                                        f0(600), f0(980), a0(980), K0(900)

!(1405)  J,= 1/2-, flavor singlet

  ! uds       L=1 orbital excited state   S=1/2 => J=1/2- and 3/2-

  ! (ud) (su) u      L=0 ground state

 s=0 diquarks + antiquark:  S=1/2  => J=1/2 isolated

The competition between the kinetic energy and the extra quark 

masses indicates possible mixing of the two Fock components.

24

Number of quarks in hadrons
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So far, hadrons are regarded as bound states of “valence” quarks 

defined in the quark model.

What does QCD predict?

In QCD, all hadrons, even N(940), contain extra qq as meson 

clouds and/or sea quarks.

When do we identify the extra flavor-singlet qq (or glue) as 
"valence" components?

We need a "good" definition of multi-quark-ness.

QCD multi-quark operators can couple to sea quarks.

The large “constituent” mass may correspond to the large x region 
of the quark-parton distribution function.

Number of quarks in hadrons
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DIS and other high energy processes may identify “valence” quarks.

 Parton distribution = valence + sea

 

Cannot measure the pdf of resonances: f0, a0, !* etc.

valence quarks

sea quarks

Number of quarks in hadrons
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New approach with the fragmentation functions

PR D77 (2008) 017504; arXiv:0708.1816v1 [hep-ph]

Coefficient Function
     calculable in pQCD

Fragmentation Function
     extracted from experiments

Number of quarks in hadrons
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 -2/d.o.f. = 0.907

Total Number of data: 23

Tetra-quark configuration

favored FF: u and s quarks

Peak at large-z (z~0.85)

zu
max ~ zs

max

  or

ss configuration 

Mu < Ms

(Mu/Ms=0.43 ± 6.73)

Large uncertainty

Need further precise data

2nd moments
Mu=0.0012 ± 0.0107
Ms=0.0027 ± 0.0183
Mg=0.0090 ± 0.0046

Number of quarks in hadrons

Fragmentation function f0(980)
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“Number of quarks” is not conserved in QCD. 

We need a good definition(s) of “number of quarks” in 

order to identify exotic multi-quark component in 

hadrons.

We propose a plausible way of searching exotic hadrons 

using the fragmentation functions in high energy 

collisions.
Applied to the global analysis of FFs of the f0(980) 

production.
Indicating tetra-quark and/or ss configuration
Large uncertainty of the current production data does not 

allow to distinguish them.

Number of quarks in hadrons: summary



QCDから原子核へ
QCD を（大きい）原子核に直接適用できるか。
   Not now.  Maybe, in future.

QCD が原子核物理に与える情報はなにか
核力　メソン交換部分
　　　短距離部分
カイラル有効理論のパラメータ

Lattice QCD  mostly numerical

Other semi-analytic methods

        QCD sum rules, Large Nc, Effective theories 
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Lattice QCD
unquenched QCD with Nf = 2+1 flavors

almost physical quark mass

      S. Aoki, et al., (PACS-CS Collaboration), arXiv:0807.1661

31

QCDから原子核へ



Lattice QCD
unquenched QCD with Nf = 2+1 flavors

almost physical quark mass

      S. Aoki, et al., (PACS-CS Collaboration), arXiv:0807.1661

31

QCDから原子核へ
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QCD calculation of coupling constants

The meson-baryon coupling constants and form factors 

are the most fundamental quantities describing 

hadronic interactions in QCD. Serious QCD-based 

calculations have just started.

The SU(3) invariance for the coupling constants is not 

established, although the phenomenological models often 

assume the invariance.  The F/D ratios of the coupling 

constants are the fitting parameters in the models.

How strong is the SU(3) violation in the coupling 

constants?

What does QCD predict for F/D ratio, if SU(3) is valid?
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 ,NN coupling constant  

QCD Sum rules for coupling constants

tensor

Double pole term

T. Doi, H. Kim, M.O.,  PR C52 (2000)
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F/D ratio v.s. cos. for T sum rule

F/D = 0.65 ± 0.10

" 2/3  for SU(6)

" 0.57 from gA (exp)

" Tensor sum rule T. Doi, H. Kim, M.O.,  PR C52 (2000)
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Projected correlation function

The most reliable estimate of the absolute value of the pi-

N-N coupling is  by the projected correlated function 

method:  Kondo-Morimatsu/ Nucl. Phys. A717 (2003)

g!N

g!N = 9.6 ± 1.6

v.s.
g!N (exp.) ~12.8

slightly 
underestimated

Borel Mass MB
2
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Sum rule result

T. Doi, Y. Kondo, M.O. (2003)

Borel mass

SU(3) broken

SU(3) limit



LQCD for the meson-baryon couplings

Lattice QCD (Nf =2) is applied to 

the ps-meson-octet-baryon coupling form factors.   
T.T. Takahashi, G. Erkol, MO (2008)

CP-PACS gauge configuration: 2-flavor dynamical 

quarks on the 163x32 lattice

RG improved gauge action + the mean-field improved 

clover quark action

"=1.95 # a = 0.16 fm  a -1 = 1.267 GeV

The ratio and absolute values of the coupling constants 

are obtained for several quark masses: mq ~ 150, 100, 

65, 35 MeV.
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pi-N-N coupling/form factor

38

2

with Γ ≡ γ3γ5Γ4 and Γ4 ≡ (1 + γ4)/2. The baryon
interpolating fields are given as

ηN (x) = εabc[uTa(x)Cγ5d
b(x)]uc(x),

ηΣ(x) = εabc[sTa(x)Cγ5u
b(x)]uc(x),

ηΛ(x) =
1√
6
εabc{[uTa(x)Cγ5s

b(x)]dc(x) − [dTa(x)C

× γ5s
b(x)]uc(x) + 2[uTa(x)Cγ5d

b(x)]sc(x)},

(6)

where C = γ4γ2 and a, b, c are the color indices. t1 is
the time when the meson interacts with a quark and t2 is
the time when the final baryon state is annihilated. The
ratio in Eq. (3) reduces to the desired pseudoscalar form
factor when t2 − t1 and t1 % a, viz.

R(t2, t1;0,p; Γ; µ)
t1!a−−−−−−→

t2−t1!a

gL
P (q2)

[2E(E + m)]1/2
q3, (7)

where m and E are the mass and the energy of the ini-
tial baryon, respectively, and gL

P (q2) is the lattice pseu-
doscalar form factor. Since the ratio in (7) is propor-
tional to the transfered momentum q3, it cannot be used
directly to obtain gL

P (q2) at q2 = 0. We apply a proce-
dure (similarly to the one in Ref. [2]) of seeking plateau
regions as a function of t1 in the ratio (7) and calculating
gL

P (q2) at the momentum transfers q2a2 = n(2π/L)2 (for
the lowest nine n points), where L is the spatial extent
of the lattice. We then obtain the meson-baryon form
factor via the relation

gL
P (q2) =

GM gMBB′(q2)

m2
M − q2

, (8)

assuming meson-pole dominance. Here GM ≡
〈vac|P (0)|M〉 is extracted from the two-point mesonic
correlator 〈P (x)P (0)〉. Finally we extract the meson-
baryon coupling constants gMBB′ = gMBB′(0) by means
of a monopole form factor:

gMBB′(q2) = gMBB′

Λ2
MBB′

Λ2
MBB′ − q2

. (9)

We employ a 163×32 lattice with two flavors of dynam-
ical quarks and use the gauge configurations generated
by the CP-PACS collaboration [6] with the renormal-
ization group improved gauge action and the mean-field
improved clover quark action. We use the gauge config-
urations at β = 1.95 with the clover coefficient cSW =
1.530, which give a lattice spacing of a = 0.1555(17) fm
(a−1 = 1.267 GeV). The simulations are carried out with
four different hopping parameters for the sea and the u,d
valence quarks, κsea, κu,d

val = 0.1375, 0.1390, 0.1400 and
0.1410, which correspond to quark masses of ∼ 150, 100,
65, and 35 MeV, and we use 590, 680, 680 and 490 such
gauge configurations, respectively. The hopping param-
eter for the s valence quark is fixed to κs

val = 0.1393 [6],
which corresponds to a quark mass of ∼ 90 MeV. In
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FIG. 1: gπNN and ΛπNN as a function of m2
π. The empty

circle denotes the SU(3)F limit and the diamond marks the
experimental point. The solid lines and the shaded regions
denote linear chiral extrapolations with errors.

order to decrease the statistical errors we take several
different source points using the translational invariance
along the temporal direction. We employ local source
and local sinks, which are separated by 12 lattice units
in the temporal direction. All the statistical errors are
estimated via the jackknife analysis.

TABLE I: The fitted values of mπ, mK , mN , mΛ and mΣ in
lattice units. The row named “CL” shows the values extrap-
olated to the chiral limit.

κu,d
val mπ mK mN mΛ mΣ

0.1375 0.899(1) 0.834(1) 1.707(06) 1.658(06) 1.648(06)
0.1390 0.737(1) 0.725(1) 1.475(05) 1.466(06) 1.464(06)
0.1393 0.713(1) 0.713(1) 1.455(06) 1.455(06) 1.455(06)
0.1400 0.603(1) 0.635(1) 1.289(05) 1.312(04) 1.318(05)
0.1410 0.440(1) 0.533(1) 1.051(08) 1.114(06) 1.134(07)

CL - 0.395(2) 0.749(18) 0.853(16) 0.892(16)

In Table I, we give the fitted values of the meson and
baryon masses as obtained from the two-point correlation
function in Eq. (4) and extrapolated to the chiral point.
We extract the meson-baryon coupling constants, gMBB′

and the corresponding monopole masses ΛMBB′ for each
κu,d

val and make a linear extrapolation to the chiral limit.
Our results are presented in Table II: we give the fitted
value of the πNN coupling constant and the correspond-
ing monopole mass, as well as the fitted values of the
πΣΣ, πΛΣ, KΛN and KΣN coupling constants and the
corresponding monopole masses normalized with gπNN

and ΛπNN , respectively. In Table II, gR
MBB′ and ΛR

MBB′

denote gMBB′/gπNN and ΛMBB′/ΛπNN , respectively. We
expect that the systematic errors cancel out to some de-
gree in the ratios of the coupling constants and those of
the monopole masses. We give a graphical representation
of our results in Figs. 1 and 2. In Fig. 1 we plot gπNN and

! The naive chiral 

extrapolation results in 

  g$NN ~ 11.02 ± 0.55

 (g$NN (pheno.) ~ 12.8

!The monopole form 

factor is softer than the 

one used in the meson 

exchange models.

  %$NN ~ 0.62 ± 0.11 a -1

　　   ~ 0.79 GeV



3

TABLE II: The fitted value of the πNN coupling constant and the corresponding monopole mass, together with the fitted
values of the πΣΣ, πΛΣ, KΛN and KΣN coupling constants and the corresponding monopole masses normalized with gπNN

and ΛπNN , respectively. Here, we define gR
MBB′ = gMBB′/gπNN and ΛR

MBB′ = ΛMBB′/ΛπNN . The rows named “CL” and “CL′”
show the values linearly extrapolated to the chiral limit with and without including the data at κu,d

val =0.1375, respectively.

κu,d
val gπNN ΛπNN gR

πΣΣ gR
πΛΣ gR

KΛN gR
KΣN ΛR

πΣΣ ΛR
πΛΣ ΛR

KΛN ΛR
KΣN

0.1375 13.049(341) 1.166(111) 0.774(12) 0.676(07) -1.047(10) 0.215(12) 0.995(057) 1.001(039) 1.005(33) 0.834(101)
0.1390 12.452(485) 1.031(131) 0.762(18) 0.730(12) -1.022(10) 0.226(15) 1.035(084) 0.900(043) 1.005(29) 0.977(136)
0.1393 13.358(670) 0.870(110) 0.770(17) 0.714(11) -1.021(10) 0.229(19) 1.038(048) 0.968(031) 1.020(21) 0.937(128)
0.1400 11.662(351) 1.349(205) 0.765(21) 0.716(10) -1.001(11) 0.243(18) 1.072(101) 0.982(054) 1.048(45) 0.734(142)
0.1410 12.063(946) 0.711(086) 0.762(43) 0.796(43) -1.013(30) 0.272(44) 1.189(124) 0.901(076) 1.094(44) 0.895(147)

CL 11.022(549) 0.620(108) 0.756(25) 0.769(15) -0.973(16) 0.265(25) 1.168(097) 0.897(062) 1.093(44) 0.882(152)
CL′ 10.504(1.071) 0.614(150) 0.763(47) 0.729(33) -0.973(30) 0.288(45) 1.245(169) 0.948(101) 1.139(64) 0.748(226)

ΛπNN as a function of the pion-mass squared. The ratios
of the πΣΣ, πΛΣ, KΛN and KΣN coupling constants
to the πNN coupling constant are shown in Fig. 2.
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FIG. 2: The ΣΣπ, ΛΣπ, KΛN and KΣN coupling constants
normalized with gπNN as a function of m2

π. The empty circle
denotes the SU(3)F limit. The solid lines and the shaded
regions denote linear chiral extrapolations with errors.

We observe from Fig. 1 that gπNN and ΛπNN fluctuate
and do not lie on a line, which might be due to uncontrol-
lable systematic errors. In fact, large deviations beyond
the statistical errors occur especially at κu,d = 0.1400 in
all the monopole masses. We perform linear chiral ex-
trapolations for gπNN and ΛπNN . The pole dominance
by the ground-state pion, which has been assumed in

Eq. (8), is expected to be lost due to the excited-pion con-
tributions, as we employ heavier quark masses or larger
transferred momenta. However, such contaminations can
be neglected as long as the excited-pion–nucleon cou-
plings are suppressed as compared to the pion-nucleon
coupling. In order to ensure that pion excitations do not
affect the results, we perform linear chiral extrapolations
with and without including the data at κu,d

val =0.1375,
which corresponds to the heaviest quark mass in our se-
tups and would cause the largest excited-state contam-
inations. We show the results in Table II on the rows
named “CL” and “CL′”, respectively. The results are
found to agree within their error bars. As compared to
the experimental result, our calculations underestimate
gπNN by ∼2.7 standard deviations. It is also smaller than
the value extracted from earlier quenched-lattice QCD
calculations, which is gπNN = 12.7 ± 2.4 [2], however in
good agreement with that from the state-of-the-art lat-
tice calculations [5]. The extrapolated monopole mass in
the πNN form factor, ΛπNN=0.614(150), is smaller than
those employed in phenomenological potential models,
typically around 1 GeV.

Having discussed the results for gπNN , we proceed with
the octet-meson–baryon coupling constants. We first
concentrate on the SU(3)-flavor symmetric case, where
κu,d

val ≡ κs
val = 0.1393 and the SU(3)F relations in Eq.(1)

are exact. (Here we take κu,d
sea =0.1390 and neglect the

difference in the sea-quark effects.) As expected, all the
coupling ratios, gR

πΣΣ, gR
πΛΣ, gR

KΛN , and gR
KΣN are well

reproduced with α = 0.384(8), which is obtained by a
global fit. The ratios of the monopole masses, ΛR

πΣΣ,
ΛR

πΛΣ, ΛR
KΛN , and ΛR

KΣN , are consistent with unity. The
obtained value of α is remarkably close to that in the
SU(6) spin-flavor symmetry (α = 2/5) [7], which is the
symmetry based on the nonrelativistic quark model.

We next discuss the SU(3)F broken case. The quark-
mass dependences we find for gR

MBB′ and ΛR
MBB′ are

not large. The ratios of the coupling constants, gR
MBB′ ,

are similar in value to those in the SU(3)F symmetric
limit, and the monopole-mass ratios ΛR

MBB′ are almost
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TABLE II: The fitted value of the πNN coupling constant and the corresponding monopole mass, together with the fitted
values of the πΣΣ, πΛΣ, KΛN and KΣN coupling constants and the corresponding monopole masses normalized with gπNN

and ΛπNN , respectively. Here, we define gR
MBB′ = gMBB′/gπNN and ΛR

MBB′ = ΛMBB′/ΛπNN . The rows named “CL” and “CL′”
show the values linearly extrapolated to the chiral limit with and without including the data at κu,d

val =0.1375, respectively.

κu,d
val gπNN ΛπNN gR

πΣΣ gR
πΛΣ gR

KΛN gR
KΣN ΛR

πΣΣ ΛR
πΛΣ ΛR

KΛN ΛR
KΣN

0.1375 13.049(341) 1.166(111) 0.774(12) 0.676(07) -1.047(10) 0.215(12) 0.995(057) 1.001(039) 1.005(33) 0.834(101)
0.1390 12.452(485) 1.031(131) 0.762(18) 0.730(12) -1.022(10) 0.226(15) 1.035(084) 0.900(043) 1.005(29) 0.977(136)
0.1393 13.358(670) 0.870(110) 0.770(17) 0.714(11) -1.021(10) 0.229(19) 1.038(048) 0.968(031) 1.020(21) 0.937(128)
0.1400 11.662(351) 1.349(205) 0.765(21) 0.716(10) -1.001(11) 0.243(18) 1.072(101) 0.982(054) 1.048(45) 0.734(142)
0.1410 12.063(946) 0.711(086) 0.762(43) 0.796(43) -1.013(30) 0.272(44) 1.189(124) 0.901(076) 1.094(44) 0.895(147)

CL 11.022(549) 0.620(108) 0.756(25) 0.769(15) -0.973(16) 0.265(25) 1.168(097) 0.897(062) 1.093(44) 0.882(152)
CL′ 10.504(1.071) 0.614(150) 0.763(47) 0.729(33) -0.973(30) 0.288(45) 1.245(169) 0.948(101) 1.139(64) 0.748(226)

ΛπNN as a function of the pion-mass squared. The ratios
of the πΣΣ, πΛΣ, KΛN and KΣN coupling constants
to the πNN coupling constant are shown in Fig. 2.
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FIG. 2: The ΣΣπ, ΛΣπ, KΛN and KΣN coupling constants
normalized with gπNN as a function of m2

π. The empty circle
denotes the SU(3)F limit. The solid lines and the shaded
regions denote linear chiral extrapolations with errors.

We observe from Fig. 1 that gπNN and ΛπNN fluctuate
and do not lie on a line, which might be due to uncontrol-
lable systematic errors. In fact, large deviations beyond
the statistical errors occur especially at κu,d = 0.1400 in
all the monopole masses. We perform linear chiral ex-
trapolations for gπNN and ΛπNN . The pole dominance
by the ground-state pion, which has been assumed in

Eq. (8), is expected to be lost due to the excited-pion con-
tributions, as we employ heavier quark masses or larger
transferred momenta. However, such contaminations can
be neglected as long as the excited-pion–nucleon cou-
plings are suppressed as compared to the pion-nucleon
coupling. In order to ensure that pion excitations do not
affect the results, we perform linear chiral extrapolations
with and without including the data at κu,d

val =0.1375,
which corresponds to the heaviest quark mass in our se-
tups and would cause the largest excited-state contam-
inations. We show the results in Table II on the rows
named “CL” and “CL′”, respectively. The results are
found to agree within their error bars. As compared to
the experimental result, our calculations underestimate
gπNN by ∼2.7 standard deviations. It is also smaller than
the value extracted from earlier quenched-lattice QCD
calculations, which is gπNN = 12.7 ± 2.4 [2], however in
good agreement with that from the state-of-the-art lat-
tice calculations [5]. The extrapolated monopole mass in
the πNN form factor, ΛπNN=0.614(150), is smaller than
those employed in phenomenological potential models,
typically around 1 GeV.

Having discussed the results for gπNN , we proceed with
the octet-meson–baryon coupling constants. We first
concentrate on the SU(3)-flavor symmetric case, where
κu,d

val ≡ κs
val = 0.1393 and the SU(3)F relations in Eq.(1)

are exact. (Here we take κu,d
sea =0.1390 and neglect the

difference in the sea-quark effects.) As expected, all the
coupling ratios, gR

πΣΣ, gR
πΛΣ, gR

KΛN , and gR
KΣN are well

reproduced with α = 0.384(8), which is obtained by a
global fit. The ratios of the monopole masses, ΛR

πΣΣ,
ΛR

πΛΣ, ΛR
KΛN , and ΛR

KΣN , are consistent with unity. The
obtained value of α is remarkably close to that in the
SU(6) spin-flavor symmetry (α = 2/5) [7], which is the
symmetry based on the nonrelativistic quark model.

We next discuss the SU(3)F broken case. The quark-
mass dependences we find for gR

MBB′ and ΛR
MBB′ are

not large. The ratios of the coupling constants, gR
MBB′ ,

are similar in value to those in the SU(3)F symmetric
limit, and the monopole-mass ratios ΛR

MBB′ are almost
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Lattice QCD Summary

The two-flavor full-QCD lattice calculation was performed 

for the ps meson-baryon coupling constants and form 

factors.

The SU(3) symmetry for the ps meson- octet-baryon 

couplings happens to be “very” good. The F/(F+D) ~ 0.384 

ratio is consistent with SU(6).

g$NN ~ 11.02 ± 0.55 vs  g$NN (pheno.) ~ 12.8

The monopole form factor is softer than the one used in the 

meson exchange models. %$NN ~ 0.79 GeV.

These results are consistent with the QCDSR.

Future perspectives

Further important predictions, !"", K#", K$", . . .

Excited baryons, !N%, !NN*, !$#(1405), KN#(1405) . .

Other mesons, &, ', K*, (
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結論
QCDから原子核へ
QCD = (quark + gluon) カラーゲージ理論
核子とパイオン = 白色の多クォーク系
ハドロンの相互作用 = 白色多体系間の相互作用
カラーを積分して「白色」有効理論を作る
有効理論のパラメータをQCDから決める
　　質量、結合定数

quark model は復活できるか？
No! ならハドロンの統一的な物理描像の構築が新しい課題
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