ミニワークショップ「核データと核理論」 @理化学研究所 2009.3.25-26

# 高エネルギー核データの現状と その応用

### 九大•総理工 渡辺幸信



内容

- 高エネルギー核データニーズ
- 国内における高エネルギー核データ評価活動
   JENDL High-energy ファイル
- 応用例と必要な核データ
  - 半導体ソフトエラー研究
  - 核融合研究関連
- まとめ

## Needs of high-energy nuclear data

Various applications fields relevant to "high-energy nuclear data"

### **Accelerator applications**

Accelerator Power Supply 熱エネルギー Thermal Energy

陽子 Protor

Target Nucleus

中性子 Neutron

発電設備

Generator

- Accelerator design (Shielding calculation, Activity estimation)

Spent Fue

直伽理·群分離協同

Reprocessing/Separation

- Nuclear waste transmutation (Particle transport calculation)

### **Medical applications**

- Advanced radiation therapy
- Medical radioisotope production

### **Astrophysics, Space Engineering**

- Study of origin of material and comic-rays
- Estimation of radiation dose for space ships and astronauts
- Radiation damage on microelectronics by cosmic-rays

### Energy region required for high-energy nuclear data



- Extension of incident energy range beyond 20 MeV
- Inclusion of protons and other light-ions (d, t, alpha,etc.) as incident particles

# 内容

- 高エネルギー核データニーズ
- 国内における高エネルギー核データ評価活動
   JENDL High-energy ファイル
- 応用例と必要な核データ
  - 半導体ソフトエラー研究
  - 核融合研究関連
- まとめ

## JENDL high-energy file project

• JENDL = Japanese Evaluated Nuclear Data Library

 汎用ファイルの最新版: JENDL-3.3 (2002)
 → 20MeV以下中性子, 337 核種 (JENDL-4:来年度末公開予定)

シグマ委員会 高エネルギー核データ評価WG: 16 名(H20年度)
 産官学連携プロジェクト
 (IAFA 東エナ カナ KFK DIST ロウ 清水建設等)

(JAEA, 東工大, 九大, KEK, RIST, 日立、清水建設等)

### **JENDL High-Energy file (JENDL-HE)**

## Continued

### **Contents of JENDL High-Energy file (JENDL-HE)**

• Nuclides : Total 132

1<sup>st</sup> Priority (39 nuclides), 2<sup>nd</sup> (43), 3<sup>rd</sup> (40), 4<sup>th</sup> (10)

- Upper limit of incident energy : 3 GeV for neutron and proton
- Type of cross sections
  - Total, Elastic, Non-elastic cross sections
  - Light particles and gamma-ray production cross sections and DDXs (n, p, d, t, <sup>3</sup>He,  $\alpha$ , pions, and  $\gamma$ )
  - Isotope production cross sections
  - Fission cross sections
- Data format: ENDF-6

# List of Nuclei

| 1 <sup>st</sup> priority<br>(39) | <sup>1</sup> H, <sup>12</sup> C, <sup>14</sup> N, <sup>16</sup> O, <sup>27</sup> Al, <sup>50,52,53,54</sup> Cr, <sup>54,56,57,58</sup> Fe,<br><sup>58,60,61,62,64</sup> Ni, <sup>63,65</sup> Cu, <sup>180,182,183,184,186</sup> W,<br><sup>196,198,199,200,201,202,204</sup> Hg, <sup>204,206,207,208</sup> Pb, <sup>209</sup> Bi, <sup>235,238</sup> U                                                                            |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 <sup>nd</sup> priority<br>(43) | <sup>9</sup> Be, <sup>10,11</sup> B, <sup>24,25,26</sup> Mg, <sup>28,29,30</sup> Si, <sup>39,41</sup> K, <sup>40,42,43,44,46,48</sup> Ca, <sup>46,47,48,49,50</sup> Ti, <sup>51</sup> V, <sup>55</sup> Mn, <sup>59</sup> Co, <sup>90,91,92,94,96</sup> Zr, <sup>93</sup> Nb, <sup>92,94,95,96,97,98,100</sup> Mo, <sup>238,239,240,241,242</sup> Pu                                                                                |
| 3 <sup>rd</sup> priority<br>(40) | <sup>2</sup> H, <sup>6,7</sup> Li, <sup>13</sup> C, <sup>19</sup> F, <sup>23</sup> Na, <sup>35,37</sup> Cl, <sup>35,38,40</sup> Ar, <sup>64,66,67,68,70</sup> Zn,<br><sup>69,71</sup> Ga, <sup>70,72,73,74,76</sup> Ge, <sup>75</sup> As, <sup>89</sup> Y, <sup>181</sup> Ta, <sup>197</sup> Au, <sup>232</sup> Th,<br><sup>233,234,236</sup> U, <sup>237</sup> Np, <sup>241,242,242m, 243</sup> Am, <sup>243,244,245,246</sup> Cm |
| 4 <sup>th</sup> priority<br>(10) | <sup>15</sup> N, <sup>18</sup> O, <sup>74,76,77,78,80,82</sup> Se, <sup>113,115</sup> In                                                                                                                                                                                                                                                                                                                                           |

Released as JENDL/HE-2004 ( 66 nuclei ) Released as JENDL/HE-2007 ( 66+40=106 nuclei ) It will be released as a supplement in next year Evaluation

Evaluation is not accomplished yet ...

### How Do We Produce Nuclear Data for Applications ?



## **Overview of high-energy nuclear reactions**



## Hybrid nuclear model code system (I)



## Hybrid nuclear model code system (II)



# Optical Model Analysis (<200 MeV)

### Model :

- Coupled-channel OM (RRM/SRM)
   Deformed Nuclei
- Spherical OM + DWBA

 $\longrightarrow$  (Near-) spherical Nuclei

### **Optical Potential (OMP) :**

- Continuous local/global (<200MeV)
- Isospin-dependent
   (Soukhovitskii's framework)
- Global / folding OMP for d, t, h,  $\alpha$



# **GNASH** Calculation

OM + Statistical + Pre-equilibrium model + Kalbach's syst.





**Cross Section (b)** 

**Incident Proton Energy (MeV)** 

## Isobar production cross section for p+ <sup>12</sup>C



内容

- 高エネルギー核データニーズ
- 国内での高エネルギー核データ評価活動
   JENDL High-energy ファイル
- 応用例と必要な核データ
  - 半導体ソフトエラー研究
  - 核融合研究関連
- まとめ

# Cosmic-rays induced single-event upsets in microelectronics and related nuclear reaction database - The role of nuclear physics in IT society -







# 研究背景

### LSIの微細化・高密度化 □ ソフトエラー率の増大が懸念 DRAM, SRAM ⇒ 論理回路

ソフトエラー: ある種の放射線がLSIと衝突することに よって、LSIが一過性の誤動作を起こす現象





放射線







### 放射線源

- 1) α線(放射性同位元素不純物:U, Th, Po)
- 2) 熱中性子(<1eV): BPSG膜中の<sup>10</sup>Bとの相互作用で 生成したα粒子と<sup>7</sup>Liイオン
- 高エネルギー宇宙線中性子(MeV~GeV)による 核反応で生成した各種二次イオン



November 13, 2000

Note that the cosmic-ray induced SEU was predicted by Ziegler@IBM and Landford@Yale Univ. (1979).

### Sun Screen

THE MYSTERIOUS GLITCH has been popping up since late last year. At a new Web company in San Francisco, a telecommunications company in the Midwest, a Baby Bell in Atlanta, an Internet domain registry on the East Coast--for no apparent reason, **high-end servers made by Sun Microsystems suddenly crashed**.

. . . . . .

Sun says it has finally figured out what's wrong. **It is an odd problem involving stray cosmic rays** and memory chips in the flagship Enterprise server line, whose models are priced at \$50,000 to more than \$1 million. Yet Sun won't fix all of the servers it has sold; instead it will make repairs when it deems them necessary.

http://www.forbes.com/forbes/2000/1113/6613068a\_print.html

## **Cosmic-ray environment**



J.F. Ziegler, IBM J. Res. Develop. Vol. 40, No. 1 (1996), p. 19

# 宇宙線中性子起因ソフトエラー発現へ至る物理過程の時間・空間発展







# モデル計算の比較(QMD vs INC)

### p+27A1@180MeV



### Future requirement for nuclear data

- More measurements of DDXs of secondary ions over the wide mass range are required for testing the predictions of reaction models and their refinement. (Target: Si and O)
  - H. Machner et al., PRC 73, 044606 (2006): He, Li, Be, B from 200 MeV p+AI



Further refinement of the models is necessary to provide reliable nuclear reaction data

### 2次イオン(A>=4)生成実験

PHYSICAL REVIEW C 77, 044601 (2008)

#### 200 and 300 MeV/nucleon nuclear reactions responsible for single-event effects in microelectronics

H. Jäderström,<sup>1,\*</sup> Yu. Murin,<sup>2,3</sup> Yu. Babain,<sup>2</sup> M. Chubarov,<sup>2</sup> V. Pljuschev,<sup>2</sup> M. Zubkov,<sup>2</sup> P. Nomokonov,<sup>3</sup> N. Olsson,<sup>4</sup> J. Blomgren,<sup>5</sup> U. Tippawan,<sup>5</sup> L. Westerberg,<sup>6</sup> P. Golubev,<sup>7</sup> B. Jakobsson,<sup>7</sup> L. Gerén,<sup>8</sup> P.-E. Tegnér,<sup>8</sup> I. Zartova,<sup>8</sup> A. Budzanowski,<sup>9</sup> B. Czech,<sup>9</sup> I. Skwirczynska,<sup>9</sup> V. Kondratiev,<sup>10</sup> H. H. K. Tang,<sup>11</sup> J. Aichelin,<sup>12</sup> Y. Watanabe,<sup>13</sup> and K. K. Gudima<sup>14</sup> <sup>1</sup>Department of Nuclear and Particle Physics, Uppsala University, Box 531, S-751 21 Uppsala, Sweden <sup>2</sup>V. G. Khlopin Radium Institute, 2nd Murinski prospect 28, RU-194021 Saint-Petersburg, Russia <sup>3</sup>Joint Institute for Nuclear Research, JINR, RU-141980, Dubna, Russia <sup>4</sup>Swedish Defence Research Agency (FOI), S-172 90 Stockholm, Sweden <sup>5</sup>Department of Neutron Research, Uppsala University, Box 525, S-751 20 Uppsala, Sweden <sup>6</sup>Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala, Sweden <sup>7</sup>Department of Physics, Lund University, Box 118, S-221 00 Lund, Sweden <sup>8</sup>Department of Physics, Stockholm University, S-10691 Stockholm, Sweden <sup>9</sup>H. Niewodniczanski Institute of Nuclear Physics, 31-342 Cracow, Poland <sup>10</sup>St. Petersburg State University, RU-198504 St. Petersburg, Russia <sup>11</sup>IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598, USA <sup>12</sup>IN2P3/CNRS, Ecole des Mines de Nantes, 4 rue Alfred Kastler, F-44072 Nantes cedex 03, France <sup>13</sup>Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan <sup>14</sup>Institute of Applied Physics, Moldova Academy of Sciences, MD-2028 Kishinev, Moldova (Received 27 November 2007; published 7 April 2008)

## 反跳核の角度分布

### He粒子



FIG. 2. Angular distribution of He fragments observed with FWD and SAD (open points) for 200 and 300 MeV/nucleon  $^{28}Si+^{1}H(^{2}H)$  reactions confronted to the prescription of DCM (solid curves) and JQMD (dashed curves). Statistical error bars fall within the point size.



## Present status of QMD for light-ion production



Remarkable underestimation in the preequilibrium region !

# 九大-Uppsala大の共同実験



# 核融合炉開発関連トピックス

- FENDL(Fusion Evaluated Nuclear Data Library)
  - ITER, DEMO炉: 20 MeV 中性子データ必要
  - IFMIF: 40MeVまでの重陽子+50MeVまでの 中性子データ









### IFMIF

核融合炉ニュートロニクス(中性子工学)



### トリチウムの増殖生産



 $^{9}$ Be + n  $\rightarrow$  2n + 2He - 2.5 MeV

 $^{A}Pb + n \rightarrow 2n + ^{A-1}Pb - 7 MeV$ 

### 中性子による材料損傷



図 11.2 反応断面積の中性子エネルギー依存性(出典:E. Teller: "Fusion", vol.1, Magnetic Confinement part B, 1881, Academic Press, New York.)

### 引用:関昌弘著、核融合炉工学概論

# FENDL-3

- Up to 150 MeV

Library

ENDF/B-VII.0

- n, p, d

No.

1



|   |                   |             | $\mathbf{v}$ , $\mathbf{v}$ , $\mathbf{v}$ , $\mathbf{v}$ , $\mathbf{v}$ , $\mathbf{v}$                                                                                                                                                                                                                          |
|---|-------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | JENDL/HE-<br>2007 | 35<br>(+11) | <sup>12</sup> C, <sup>14</sup> N, <sup>23</sup> Na, <sup>24,25,26</sup> Mg, <sup>40,42,43,44,46,48</sup> Ca,<br><sup>46,47,48,49,50</sup> Ti, <sup>51</sup> V, <sup>55</sup> Mn, <sup>69,71</sup> Ga, <sup>90,91,92,94,96</sup> Zr,<br><sup>93</sup> Nb, <sup>92,94,95,96,97,98,100</sup> Mo, <sup>181</sup> Ta, |
| 3 | JEFF-3.1          | 4           | <sup>27</sup> AI, <sup>56</sup> Fe, <sup>58,60</sup> Ni                                                                                                                                                                                                                                                          |
| 4 | BROND-2           | 2           | <sup>15</sup> N, <sup>nat</sup> Sn                                                                                                                                                                                                                                                                               |

### FENDL-3.0 Starter File (88 nuclides)

| #)  | MAT  | Material        | Lab.       | Date       | Authors                              | Source     |   |
|-----|------|-----------------|------------|------------|--------------------------------------|------------|---|
| 1)  | 125  | 1-н-1           | LANL       | EVAL-OCT05 | G.M.Hale                             | ENDF/B-VII |   |
| 2)  | 128  | 1-н-2           | LANL       | EVAL-FEB97 | P.G.Young,G.M.Hale,M.B.Chadwick      | ENDF/B-VII |   |
| 3)  | 131  | 1-н-3           | LANL       | EVAL-NOV01 | G.M.Hale                             | ENDF/B-VII |   |
| 4)  | 225  | 2-не-3          | LANL       | EVAL-MAY90 | G.Hale, D.Dodder, P.Young            | ENDF/B-VII |   |
| 5)  | 228  | 2-He-4          | LANL       | EVAL-OCT73 | Nisley,Hale,Young                    | ENDF/B-VII |   |
| 6)  | 325  | 3-Li-6          | LANL       | EVAL-APR06 | G.M.Hale, P.G.Young                  | ENDF/B-VII |   |
| 7)  | 328  | 3-Li-7          | LANL       | EVAL-AUG88 | P.G.Young                            | ENDF/B-VII |   |
| 8)  | 425  | 4-Be-9          | LLNL,LANL  | EVAL-JAN86 | Perkins, Plechaty, Howerton, Frankle | ENDF/B-VII |   |
| 9)  | 525  | 5-B-10          | LANL       | EVAL-APR06 | G.M.Hale, P.G.Young                  | ENDF/B-VII |   |
| 10) | 528  | 5-B-11          | LANL       | EVAL-MAY89 | P.G.Young                            | ENDF/B-VII |   |
| 11) | 625  | 6-C-12          | Kyushu U.  | EVAL-JUL03 | Y. Watanabe                          | JENDL-HE   | , |
| 12) | 720  | 7-N-15          | CJD        | EVAL-APR89 | A.I.BLOKHIN, N.S.RABOTNOV            | BROND-2    |   |
| 13) | 725  | 7-N-14          | AITEL      | EVAL-MAY05 | T.Murata, K.kosako and T.Fukahori    | JENDL-HE   |   |
| 14) | 825  | 8-0-16          | LANL       | EVAL-DEC05 | Hale,Young,Chadwick,Caro,Lubitz      | ENDF/B-VII |   |
| 15) | 925  | 9-F-19          | CNDC, ORNL | EVAL-OCT03 | Z.X.Zhao,C.Y.Fu,D.C.Larson, Leal+    | ENDF/B-VII |   |
| 16) | 1125 | 11-NA-23        | SIT.SHIMZ  | EVAL-MAY 6 | K. Kosako                            | JENDL-HE   |   |
| 17) | 1225 | 12-MG-24        | KYUSHU     | EVAL-DEC 3 | Sun Weili and Y.Watanabe             | JENDL-HE   |   |
| 18) | 1228 | 12-MG-25        | KYUSHU     | EVAL-DEC 3 | Sun Weili and Y.Watanabe             | JENDL-HE   |   |
| 19) | 1231 | 12-MG-26        | KYUSHU     | EVAL-DEC 3 | Sun Weili and Y.Watanabe             | JENDL-HE   |   |
| 20) | 1325 | 13-Al-27        | LANL       | EVAL-FEB97 | M.B.CHADWICK & P.G.YOUNG             | JEFF-31    |   |
| 21) | 1425 | 14-Si-28        | LANL, ORNL | EVAL-DEC02 | M.B.Chadwick, P.G.Young, D.Hetrick   | ENDF/B-VII |   |
| 22) | 1428 | 14-Si-29        | LANL, ORNL | EVAL-JUN97 | M.B.Chadwick, P.G.Young, D.Hetrick   | ENDF/B-VII |   |
| 23) | 1431 | 14-si-30        | LANL, ORNL | EVAL-JUN97 | M.B.Chadwick, P.G.Young, D.Hetrick   | ENDF/B-VII |   |
| 24) | 1525 | 15-P-31         | LANL, LLNL | EVAL-DEC97 | M.Chadwick, P.Young, R.Howerton      | ENDF/B-VII |   |
| 25) | 1625 | 16-S-32         | FUJI E.C.  | EVAL-MAY87 | H.Nakamura                           | ENDF/B-VII |   |
| 26) | 1628 | 16-S-33         | FUJI E.C.  | EVAL-MAY87 | H.Nakamura                           | ENDF/B-VII |   |
| 27) | 1631 | 16-S-34         | FUJI E.C.  | EVAL-MAY87 | H.Nakamura                           | ENDF/B-VII |   |
| 28) | 1637 | 16-S-36         | FUJI E.C.  | EVAL-MAY87 | H.Nakamura                           | ENDF/B-VII |   |
| 29) | 1725 | 17-Cl-35        | ORNL, LANL | EVAL-OCT03 | Sayer,Guber,Leal,Larson,Young+       | ENDF/B-VII |   |
| 30) | 1731 | 17-Cl-37        | ORNL, LANL | EVAL-OCT03 | Sayer,Guber,Leal,Larson,Young+       | ENDF/B-VII |   |
| 31) | 1925 | 19-K-39         | FUJI E.C.  | EVAL-MAY87 | H.Nakamura                           | ENDF/B-VII |   |
| 32) | 1928 | <b>19-K-4</b> 0 | FUJI E.C.  | EVAL-MAY87 | H.Nakamura                           | ENDF/B-VII |   |
| 33) | 1931 | 19-K-41         | FUJI E.C.  | EVAL-MAY87 | H.Nakamura                           | ENDF/B-VII |   |
| 34) | 2025 | 20-CA-40        | SAEI       | EVAL-MAY 3 | K. Kosako                            | JENDL-HE   | - |
| 35) | 2031 | 20-CA-42        | SAEI       | EVAL-MAY 3 | K. Kosako                            | JENDL-HE   |   |
| 36) | 2034 | 20-CA-43        | SAEI       | EVAL-MAY 3 | K. Kosako                            | JENDL-HE   |   |
| 37) | 2037 | 20-CA-44        | SAEI       | EVAL-MAY 3 | K. Kosako                            | JENDL-HE   |   |
| 38) | 2043 | 20-CA-46        | SAEI       | EVAL-MAY 3 | K. Kosako                            | JENDL-HE   |   |
| 39) | 2049 | 20-CA-48        | SAEI       | EVAL-MAY 3 | K. Kosako                            | JENDL-HE   |   |

### 20MeV 以上無

20MeV 以上 TENDL-2008 20MeV 以上 JENDL-HE

### **Deuteron Induced Reaction**

### **IFMIF** (International Fusion Materials Irradiation Facility)



## CDCC analysis of d+Li reactions



### Application of the CDCC method to deuteron elastic scattering from <sup>6,7</sup>Li

T. Ye, Y. Watanabe, K. Ogata, and S. Chiba, PRC 78, 024611 (2008).

The **CDCC** (**C**ontinuum **D**iscretaized **C**oupled-**C**hannels) method describes deuteron breakup process (A+2 body system) with following phenomenological three-body Hamiltonian :

$$H_{eff} = T_{R} + U_{pA}(\vec{r}_{p}, \vec{s}_{p}, E_{d}/2) + U_{nA}(\vec{r}_{n}, \vec{s}_{n}, E_{d}/2) + V_{p}^{(Coul)}(R) + H_{pn}(\vec{r}, \vec{s}_{p}, \vec{s}_{n})$$



Code: CDCDEU+HICADEU (by Y. Iseri et al.)



## CDCC+Glauber analysis of Li(d,nx) reactions





# まとめ

- データの完備性:
  - ✓ 2次生成粒子・反跳イオンの全断面積およびエネルギー・角度分布
  - ✓ 全放出エネルギー・角度範囲に亘るデータ
- Exclusiveデータの必要性(放出粒子間相関)
   ✓ シングルイベント現象(半導体や細胞)
   ✓ データベースでなく、event generator(モンテカルロ法)で対応
- 核子入射ばかりでなく、複合粒子も必要(例:重陽子)
- • 軽核(1p殻核:Li,Be,B,C,N,O)の断面積評価が課題
- 計算コード・サブルーチンの公開とライブラリ化