Toward realistic nuclear mean fields

H. Nakada (Chiba U.)

@ Japan-France Workshop (RIKEN; Feb. 26, 2010)

I. Introduction

"MF approx." \approx "Density Functional Theory (DFT)"

— good 1st approx. to nuclear structure problems

• describing fundamental properties from nucleonic d.o.f. (saturation, shell structure, *etc.*)

input \cdots effective int. (or EDF)

• covering whole region of nuclear chart (except $A \leq 10$?) from light to heavy, spherical to deformed nuclei stable to unstable nuclei

 \rightarrow supernova, neutron star?

- good basis for more precise description
 - ightarrow GCM, shell model, TDDM, etc.

\star Effective NN int.?

fully microscopic ("realistic") int. \cdots yet insufficient to describe fundamental properties e.g. saturation, LS splitting \Rightarrow "semi-realistic" int.

\star Numerical methods?

 $\left(\begin{array}{c} {\rm realistic \ or \ semi-realistic \ int. \ --- \ quite \ possibly \ finite-range} \\ (\leftrightarrow \ non-local \ EDF) \end{array} \right) \\ {\rm HO \ bases \ \cdots \ unrealistic \ (or \ impractical) \ in \ unstable \ nuclei \ !} \end{array} \right.$

 \Rightarrow new method desired \rightarrow Gaussian expension method (GEM)

II. MF & RPA calculations with Gaussian expansion method

'Gaussian expansion method (GEM)'

— developed by Kamimura et al. for few-body calculations

Ref.: E. Hiyama et al., Prog. Part. Nucl. Phys. 51, 223 ('03)

MF calculations with GEM

Ref.: H.N. & M. Sato, N.P.A 699, 511 ('02); 714, 696 ('03) H.N., N.P.A 764, 117 ('06); 801, 169 ('08) H.N., N.P.A 808, 47 ('08)

- **basis**: $\phi_{\nu\ell jm}(\mathbf{r}) = R_{\nu\ell j}(r) \left[Y^{(\ell)}(\hat{\mathbf{r}})\chi_{\sigma} \right]_{m}^{(j)}; \quad R_{\nu\ell j}(r) = \mathcal{N}_{\nu\ell j} r^{\ell} \exp(-\nu r^{2})$ $\nu \rightarrow \mathbf{complex} \quad \nu = \nu_{\mathrm{r}} + i\nu_{\mathrm{i}}, \ \nu: \mathbf{with geometric progression}$ $\operatorname{Re}[R_{\nu\ell j}(r)] \\ \operatorname{Im}[R_{\nu\ell j}(r)] \end{cases} \propto r^{\ell} \exp(-\nu_{\mathrm{r}} r^{2}) \begin{cases} \cos(\nu_{\mathrm{i}} r^{2}) \\ \sin(\nu_{\mathrm{i}} r^{2}) \end{cases}$
- 2-body int. matrix elements \leftarrow Fourier transform.
- \Rightarrow solve HF/HFB eq. as generalized eigenvalue problem \Rightarrow iteration
- Notes: 1) GEM bases \cdots non-orthogonal 2) ρ -dep. int. (\cdots cannot be stored) \rightarrow zero-range form

Advantages:

- $\circ \text{ efficient description of } \varepsilon \text{-dep. exponential \& oscillatory asymptotics} \\ \leftarrow \text{ superposition of multi-range Gaussians}$
- applicability to various 2-body interactions
 - \cdots suitable to studying effective int.

central, LS, tensor channels

function form of r — delta, Gauss, Yukawa, *etc.*

 \circ basis parameters insensitive to nuclide

 \cdots suitable to systematic calculations

light & heavy nuclei may be handled with a single basis-set

$$\nu_{\rm r} = \nu_0 \, b^{-2\alpha} \,, \qquad \begin{cases} \nu_{\rm i} = 0 & (\alpha = 0, 1, \cdots, 5) \\ \nu_{\rm i}/\nu_{\rm r} = \pm \frac{\pi}{2} & (\alpha = 0, 1, 2) \\ & \nu_0 = (2.4 \, {\rm fm})^{-2} \,, \quad b = 1.25 \\ & (\to 12 \text{ bases for each } (\ell, j)) \end{cases}$$

• exact treatment of Coulomb & c.m. Hamiltonian

★ Behavior of GEM bases — $s_{1/2}$ orbits

real bases:

real & complex bases:

 $(\nu_{\rm i}/\nu_{\rm r}=\pi/2)$

 \star Numerical tests — mainly with D1S int.

• $E \& \rho(r)$ of doubly-magic nuclei in spherical HF (D1S)

Ref.: H.N., N.P.A 808, 47 ('08)

Binding energy -E [MeV]: $\rho(r)$ obtained by GEM from 16 O to 208 Pb: \cdots GEM vs. h.o. 0.20 $(N_{\rm osc} \le 15, \, \omega_0 = 41.2 \, A^{-1/3})$ nuclide HO GEM 0.15 $16\mathbf{O}$ $[fm^{-3}]$ 129.638 129.520 0.10 · $^{24}\mathbf{O}$ 168.573 168.598 40 Ca 344.470 344.570 0.05 - 48 Ca 416.567 416.764 0.00 90 Zr 785.126 785.928 10 12 2 8 0 208 Pb 1639.047 1638.094 r [fm]

 \Rightarrow wide mass range of nuclei well described by a single GEM basis-set !

• S.p. w.f. in spherical HFB (D1S) Ref.: H.N., N.P.A 764, 117 ('06); 801, 169 ('08) neutron $s_{1/2}$ levels in ${}^{26}\mathrm{O}$: Fourier transform of $r u_i(r)$: 10^{0} -60 neutron $s_{1/2}$ 50 -0p_{1/2} $\frac{10^{-1}}{2}$ 10⁻¹ 40 x10⁻³ 30 -20 -10 -0 -0.5 1.0 1.5 2.0 2.5 0.0 3.0 $\frac{10^{-3}}{10^{-3}}$ 40 $\Gamma(k)$ [fm] 30 $0d_{5/2}$ x10⁻³ 20 10 10^{-5} 12 14 2 0 -0 8 10 6 0.5 0.0 1.0 1.5 2.0 2.5 3.0 [fm] r 0.25 0.20 1s_{1/2} 0.15 0.10 0.05 0.00 1.5 2.0 k [fm⁻¹] 2.5 3.0 0.5 0.0 1.0

 $\cdots \varepsilon$ -dep. exp. (& osc.) asymptotics described reasonably well

• Axial HFB by spherical GEM bases (D1S) Ref.: H.N., N.P.A 808, 47 ('08)

 $E \cdots$ GEM vs. HO ($N_{\text{osc}} \leq 10 \text{ results} \leftarrow \text{PLB 474, 15 ('00)}$)

Nuclide	НО	GEM	Exp.
$^{30}\mathbf{Mg}$	-239.30	-239.48	-241.63
$^{32}\mathbf{Mg}$	-248.22	-248.30	-249.69
$^{34}\mathbf{Mg}$	-252.82	-254.01	-256.59

 $ho(m{r})$ of ${}^{40}\mathrm{Mg}$:

RPA calculations with GEM

Ref.: H.N. et al. N.P.A 828, 283 ('09)

\star Numerical tests

 $\mathbf{Strength} \ \mathbf{function} \quad \leftarrow \mathbf{WS} \ \mathbf{pot.} + \mathbf{Shlomo-Bertsch} \ \mathbf{int.}$

HF + RPA (D1S)

spurious c.m. mode:

nuclide $\omega_s^2 [{ m MeV}^2]$
40 Ca -5.80×10^{-6}
48 Ca -8.61×10^{-6}
60 Ca -2.67×10^{-6}

EWSR:

$\mathcal{R}^{(\lambda,\tau)} := \frac{\sum_{\alpha} \omega_{\alpha} \left \langle \alpha \mathcal{O}^{(\lambda,\tau)} 0 \rangle \right ^{2}}{\frac{1}{2} \langle 0 [\mathcal{O}^{(\lambda,\tau)\dagger}, [H, \mathcal{O}^{(\lambda,\tau)}]] 0 \rangle} = 1?$							
	nuclide	$\mathcal{R}^{(\lambda=2, au=0)}$	$\mathcal{R}^{(\lambda=3,\tau=0)}$				
	40 Ca	1.005	1.031				
	${}^{48}\mathbf{Ca}$	1.006	1.033				
	$^{60}\mathbf{Ca}$	1.003	1.010				

III. Semi-realistic NN interaction

"minimal modification" of realistic force \leftrightarrow saturation, *etc.*

 \Rightarrow aiming at $\left\{ \begin{array}{l} \text{higher predictive power than} \\ \text{as wide applicability as} \end{array} \right\}$

conventional MF calculations & their extensions

M3Y int. · · · Yukawa function \rightarrow fit to G-matrix

- **OPEP** \rightarrow **longest part of** $\hat{v}_{ii}^{(C)}$ ($\equiv \hat{v}_{OPEP}^{(C)}$)
- popular in reaction problems
- no saturation (without modification) \rightarrow add $\hat{v}_{ii}^{(\mathrm{DD})}$

'M3Y-P5'' (partly **'M3Y-P5'**)

Ref.: H.N. P.R.C 78, 054301 ('08); 81, 027301 ('10)

• modifying M3Y-Paris $\begin{cases} \text{replace short-range part of } \hat{v}^{(C)} \text{ by } \hat{v}^{(DD)} \\ \text{enhance } \hat{v}^{(LS)} \quad (\leftrightarrow \ell s \text{ splitting}) \end{cases}$

- keeping $\hat{v}_{\text{OPEP}}^{(\text{C})}$ no change for $\hat{v}_{ij}^{(\text{TN})}$ from M3Y-Paris (— realistic tensor force)

 \leftrightarrow leading order of chiral dynamics

M3Y-type semi-realistic interaction

 $\hat{v}_{ii} = \hat{v}_{ii}^{(C)} + \hat{v}_{ii}^{(LS)} + \hat{v}_{ii}^{(TN)} + \hat{v}_{ii}^{(DD)};$ (rotational & translational inv.) $\hat{v}_{ij}^{(C)} = \sum \left(t_n^{(SE)} P_{SE} + t_n^{(TE)} P_{TE} + t_n^{SO} P_{SO} + t_n^{(TO)} P_{TO} \right) f_n^{(C)}(r_{ij}) ,$ $\begin{pmatrix} P_{\rm SE} \equiv \left(\frac{1-P_{\sigma}}{2}\right) \left(\frac{1+P_{\tau}}{2}\right), & P_{\rm TE} \equiv \left(\frac{1+P_{\sigma}}{2}\right) \left(\frac{1-P_{\tau}}{2}\right), \\ P_{\rm SO} \equiv \left(\frac{1-P_{\sigma}}{2}\right) \left(\frac{1-P_{\tau}}{2}\right), & P_{\rm TO} \equiv \left(\frac{1+P_{\sigma}}{2}\right) \left(\frac{1+P_{\tau}}{2}\right) \end{pmatrix} \end{pmatrix}$ $\hat{v}_{ij}^{(\text{LS})} = \sum \left(t_n^{(\text{LSE})} P_{\text{TE}} + t_n^{(\text{LSO})} P_{\text{TO}} \right) f_n^{(\text{LS})}(r_{ij}) \boldsymbol{L}_{ij} \cdot (\boldsymbol{s}_i + \boldsymbol{s}_j),$ $\hat{v}_{ij}^{(\text{TN})} = \sum_{n}^{\infty} \left(t_n^{(\text{TNE})} P_{\text{TE}} + t_n^{(\text{TNO})} P_{\text{TO}} \right) f_n^{(\text{TN})}(r_{ij}) r_{ij}^2 S_{ij}$ $\hat{v}_{ij}^{(\text{DD})} = \left(t_{\rho}^{(\text{SE})} P_{\text{SE}} C_1[\rho(\boldsymbol{r}_i)] + t_{\rho}^{(\text{TE})} P_{\text{TE}} C_0[\rho(\boldsymbol{r}_i)] \right) \delta(\boldsymbol{r}_{ii});$ $\boldsymbol{L}_{ij} \equiv (\boldsymbol{r}_i - \boldsymbol{r}_j) \times \frac{(\boldsymbol{p}_i - \boldsymbol{p}_j)}{2}, \quad S_{ij} \equiv 3(\boldsymbol{\sigma}_i \cdot \hat{\boldsymbol{r}}_{ij})(\boldsymbol{\sigma}_j \cdot \hat{\boldsymbol{r}}_{ij}) - \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j$ $f_n(r) = e^{-\mu_n r} / \mu_n r$, $C_T[\rho] = \rho^{\alpha_T}$ ($\alpha_1 = 1, \alpha_0 = 1/3$ in M3Y-P5')

- \bigstar Nuclear matter properties
 - "Equation of state"

symmetric nuclear matter

neutron matter

• Comparison of nuclear matter properties

		SLy5	D1S	M3Y-P5 ′	Exp.
$k_{ m F0}$	$[{\rm fm}^{-1}]$	1.334	1.342	1.340	1.32 - 1.37
\mathcal{E}_0	[MeV]	-15.98	-16.01	-16.14	≈ -16
${\cal K}$	[MeV]	229.9	202.9	239.1	220 - 250
M_0^*/M		0.697	0.697	0.637	0.6 - 0.8
a_t	[MeV]	32.03	31.12	28.42	≈ 30

 \circ enhancement factor for E1 energy-weighted sum:

$$1 + \kappa := \frac{\sum_{\alpha} \omega_{\alpha} \left| \langle \alpha | \hat{T}^{(E1)} | 0 \rangle \right|^2}{(\mathbf{TRK \ sum \ rule})}$$

 $\circ \ {\bf spin} \ \& \ {\bf spin-isospin} \ {\bf properties} \ \rightarrow \ {\bf Landau-Migdal} \ {\bf parameters}:$

$$\hat{\boldsymbol{v}}_{\text{res}} \approx N_0^{-1} \sum_{\ell} \left[f_{\ell} + f_{\ell}' \left(\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j \right) + \boldsymbol{g}_{\ell} \left(\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j \right) + \boldsymbol{g}_{\ell}' \left(\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j \right) \left(\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j \right) \right] P_{\ell}(\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{k}}_j)$$

$$\left(\left. \frac{1}{2} \frac{\partial^2 \mathcal{E}}{\partial \eta_s^2} \right|_0 = \frac{k_{\text{F0}}^2}{6M_0^*} (1 + g_0) , \quad \frac{1}{2} \frac{\partial^2 \mathcal{E}}{\partial \eta_{st}^2} \right|_0 = \frac{k_{\text{F0}}^2}{6M_0^*} (1 + g_0') \right)$$

	SLy5	D1S	M3Y-P5 ′	$(\hat{v}_{ ext{OPEP}}^{ ext{(C)}})$	Exp.
κ	0.250	0.660	0.884		$\gtrsim 0.7(?)$
g_0	1.123	0.466	0.216	(0.075)	$\lesssim 0.5$?
g_1	0.253	-0.184	0.255	(0.092)	
g_0'	-0.141	0.631	1.007	(0.504)	0.8 - 1.2
g'_1	1.043	0.610	0.146	(-0.031)	

\bigstar Energies & matter radii of doubly magic nuclei :

		SLy5	D1S	M3Y-P5 ′	CCSD	Exp.
$^{16}\mathbf{O}$	-E	128.6	129.5	124.1	107.5	127.6
	$\sqrt{\langle r^2 angle}$	2.59	2.61	2.60		2.61
40 Ca	-E	344.3	344.6	331.7	308.8	342.1
	$\sqrt{\langle r^2 angle}$	3.29	3.37	3.37		3.47
48 Ca	-E	416.0	416.8	411.5	355.2	416.0
	$\sqrt{\langle r^2 angle}$	3.44	3.51	3.51		3.57
$^{90}\mathbf{Zr}$	-E	782.4	785.9	775.7		783.9
	$\sqrt{\langle r^2 angle}$	4.22	4.24	4.23		4.32
$^{208}\mathbf{Pb}$	-E	1635.2	1639.0	1635.7		1636.4
	$\sqrt{\langle r^2 \rangle}$	5.52	5.51	5.51		5.49

CCSD ··· G. Hagen *et al.*, PRL 101, 092502 ('08) (chiral N³LO without 3NF)

 $\circ N = 58 \cdots \approx closed at {}^{86}Ni (1d_{5/2} \& 2s_{1/2} occupied)$

 \star S.p. energies ("shell evolution") — n shell structure in Ca to Ni region

			M3Y	Exp.	
			$\hat{v} - \hat{v}^{(\mathrm{TN})}$	\hat{v}	
"IS"	E_x	(MeV)	6.87	5.85	5.85
	$B(M1)\!\uparrow$	(μ_N^2)	4.7	2.4	2.0
''IV''	E_x	(MeV)	9.2 - 10.9	9.2 - 10.9	7.1 - 8.7
	$(ar{E_x})$		(9.9)	(9.6)	
	$\sum B(M1)\uparrow$	(μ_N^2)	16.3	19.4	16.3 or 18.2

★ HF + RPA — M1 excitations in ²⁰⁸Pb

 $(\hat{T}^{(M1)} \cdots$ including corrections from 2*p*-2*h* & MEC) \cdots role of tensor force reconfirmed

Ref.: T. Shizuma et al., P.R.C 78, 061303(R) ('08)

$$\left(ext{effects of 2-body correlations}? - \left\{ egin{array}{c} ext{IS} & \cdots & ext{weak} \\ ext{IV} & \cdots & ext{strong} \end{array}
ight)$$

V. Summary

\star Application of Gaussian expansion method \cdots useful!

Advantages of the method

- (i) efficient description of ε -dep. asymptotics
- (ii) applicability to various 2-body interactions
- (iii) basis parameters insensitive to nuclide
- (iv) exact treatment of Coulomb & c.m. Hamiltonian

\bigstar Semi-realistic interaction

 \cdots steps toward 'realistic nuclear mean fields'

Future prospect

- 2-body correlations \rightarrow GCM, shell model, TDDM, *etc.*
- more applications (*e.g.* to unstable nuclei)
- MF calculations with fully microscopic int.? \cdots not yet practical \leftrightarrow precise microscopic understanding of saturation