Introduction O	Wave-function methods	EDF methods OO	Pathologies 000	Conclusion O
Breaking	; and restoring symme	tries within the e	nergy density fu	nctional
	J. Sado	udi 1 T. Duguet 1,2		
	1 DSM/	IRFU/SPhN, CEA Saclay		
	² National Super Department of Physics a	rconducting Cyclotron Labora and Astronomy, Michigan Sta	tory, te University	
		27/02/2010		
		œ		

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	000	0
0	- 14 M			

Outline

- Introduction
 - Breaking symmetries
- Wave-function methods
 - Symmetry unrestricted Hartree-Fock
 - Projection methods
- Energy Density Functional methods
 Ingredients of the EDF method
- Pathologies
 - Particle number restoration
 - Angular momentum restoration
- Conclusion

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	000	0
Outline				

2) Wave-function methods

- Symmetry unrestricted Hartree-Fock
- Projection methods
- Energy Density Functional methods
 Ingredients of the EDF method

Pathologies

- Particle number restoration
- Angular momentum restoration

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
• •	000	00	000	0
Context				

- Two-step nuclear EDF method (i) single-reference (ii) multi-reference
- 0 Built by analogy with wave-function based methods
- SR-EDF has both similarities and differences with DFT
- Strongly relies on spontaneous symmetry breaking and restoration

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	000	0
Outline				

- Introduction
 - Breaking symmetries

Wave-function methods

- Symmetry unrestricted Hartree-Fock
- Projection methods
- Energy Density Functional methods
 Ingredients of the EDF method
- Pathologies
 - Particle number restoration
 - Angular momentum restoration

Introduction V	Vave-function methods	EDF methods 00	Pathologies 000	Conclusion O
Symmetry unrest	ricted Hartree-Fo	ck-Bogoliubov		
Hartree-Fock-Bogol	iubov approximation			
• Approx. of ind	ep. QP w.f. $ \Psi^N angle \simeq$	$ \Phi\rangle = \prod_i \beta_i 0\rangle \text{,}$	U_{ji} , V_{ji} are to be de	termined
HFB Energy :	$E^{HFB} = \frac{\langle \Phi H \Phi \rangle}{\langle \Phi \Phi \rangle}$	$\Rightarrow SWT \Rightarrow E^{HF}$	$F^B = E[\rho, \kappa, \kappa^*]$	
Variational prir	nciple : $\delta\Big(E[\rho,\kappa,\kappa^*]$	+ constraints =	= 0 gives HFB equati	ons
Hamiltonian, QP or	perators and densities			
• QP annihilation	n operator : $eta_i = \sum_j$	$\sum U_{ij}^* a_j + V_{ij}^* a_j^\dagger$		
 Hamiltonian (in 	n "2nd quantization"	$): H = \sum_{ij} t_{ij} c$	$_{i}^{\dagger}c_{j} + \frac{1}{2}\sum_{ijkl}\bar{v}_{ijkl} c_{i}^{\dagger}c$	$_{j}^{\dagger}c_{k}c_{l}$
 Normal and an 	ormal density matric	es are defined as		
	$\rho_{ij} = \frac{\langle \Phi c_j^{\dagger} c_i \Phi}{\langle \Phi \Phi \rangle}$	$\langle \rangle$, κ_{ij} =	$=\frac{\langle\Phi c_jc_i \Phi\rangle}{\langle\Phi \Phi\rangle}$	
J. Sadoudi	Worksho	op EDF	27/02/2010	6 / 17 (6)

Symmetry breaking context

- Symmetries S of the Hamiltonian \rightarrow [H,S]=0
- Densities (wave-function) are allowed to break symmetries to minimize the energy
 - Static collective correlation
- Symmetries broken example : translational, rotational, particule number invariance
- Symmetries need to be restored thanks to projection method
 - Dynamical collective correlation

Introduction Wave-function methods O O	EDF methods OO	Pathologies 000	Conclusion O
Breaking symmetries in mean field me	ethods		
Rotation invariance	Particle num	ıber invariance	
 Angular correlations 	 Pairing 	correlations	
 Quadrupole component 	S-wave	attraction	
 Rotational band 	Gap, O	EMS, moment of ine	ertia,
	+		
$ \Phi^{\rm HFB}\rangle = \cdots +$		+	22

Introduction O	Wave-function methods	EDF methods 00	Pathologies 000	Conclusion O
Breaking s	<mark>symmet</mark> ries in mean f	ield methods		
Rotation in	variance	Particle nu	ımber invariance	
 Angula 	ar correlations	 Pairin 	g correlations	
Quadr	upole component	S-way	e attraction	
 Rotation 	onal band	• Gap,	OEMS, moment of i	nertia,
	$ \Psi^{L=0M} angle$			
$ \Psi^{A-2} $	$\rangle = \frac{A-2}{\bullet \bullet \bullet \bullet \bullet}$	•		
J. Sad	loudi W	/orkshop EDF	27/02/2010	7 / 17 (9)

O C	Vave-function methods ●●○	EDF methods OO	Pathologies 000	Conclusion O
Breaking symmet	tries in mean field	l methods		
Rotation invariance	2	Particle nur	nber invariance	
 Angular correl 	ations	 Pairing 	correlations	
Quadrupole co	omponent	 S-wave 	attraction	
 Rotational bar 	nd	 Gap, C 	EMS, moment of ir	nertia,
$ \Psi$	$ L=1M\rangle$			
$ \Psi^{ m A} angle =$				
J. Sadoudi	Worksh	op EDF	27/02/2010	7 / 17 (10)

Introduction O	Wave-function methods	EDF methods 00	Pathologies 000	Conclusion O	
Breaking sy	mmetries in mean field	d methods			
Rotation inv	ariance	Particle nun	nber invariance		
 Angular 	r correlations	 Pairing 	correlations		
Quadru	pole component	 S-wave 	 S-wave attraction 		
o Rotatio	nal band	 Gap, O 	EMS, moment of i	nertia,	
	$ \Psi^{L=2M}\rangle$				
$ \Psi^{A+2} angle$	$\rangle =$		<u>A+2</u>		

- $\langle \Psi_a^{\lambda} | R(g) | \Psi_b^{\lambda'} \rangle = S_{ab}^{\lambda}(g) \delta_{\lambda\lambda'}$ • $\int_{\mathcal{G}} dm(g) S_{ab}^{\lambda*}(g) S_{a'b'}^{\lambda'}(g) = \frac{v_{\mathcal{G}}}{d_{\lambda}} \delta_{\lambda\lambda'} \delta_{aa'} \delta_{bb'}$
- Using Generalized Wick Theorem : $\langle \Phi^0 | H | \Phi^g \rangle = E[\rho^{0g}, \kappa^{0g}, \kappa^{g0*}] \langle \Phi^0 | \Phi^g \rangle$ • $E[\rho^{0g}, \kappa^{0g}, \kappa^{g0*}]$ is the same functional but of transition density matrices

• Using Generalized Wick Theorem : $\langle \Phi^0 | H | \Phi^{\varphi} \rangle = E[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi 0*}] \langle \Phi^0 | \Phi^{\varphi} \rangle$ • $E[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi 0*}]$ is the same functional but of transition density matrices

Can be proved using

• $\langle \Psi^A | e^{i \hat{N} \varphi} | \Psi^{A'} \rangle = e^{i A \varphi} \delta_{AA'}$ • $\int d\varphi e^{-i A \varphi} e^{i A' \varphi} = 2\pi \delta_{AA'}$ sr-edf

MR-EDF

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	000	0
Projection m	ethod			

Angular-momentum restoration

③ Symmetry breaking state
$$|\Phi
angle = \sum_{lm} c_{lm} |\Psi_m^l
angle$$

Projected state/energy is obtained thanks to

$$\begin{split} \Psi_m^l \rangle &= \frac{1}{c_{lk}} \frac{2l+1}{8\pi^2} \int d\Omega D_{mk}^{l*}(\Omega) R(\Omega) |\Phi\rangle \\ E^l &= \frac{1}{c_{lk}^* c_{lm}} \frac{2l+1}{8\pi^2} \int d\Omega D_{mk}^{l*}(\Omega) \langle \Phi | HR(\Omega) |\Phi\rangle \end{split}$$

Can be proved using

•
$$\langle \Psi_m^l | R(\Omega) | \Psi_k^{l'} \rangle = D_{mk}^l(\Omega) \delta_{ll'}$$

• $\int d\Omega D_{mk}^{l*}(\Omega) D_{m'k'}^{l'}(\Omega) = \frac{8\pi^2}{2l+1} \delta_{ll'} \delta_{mm'} \delta_{kk'}$

• Using Generalized Wick Theorem : $\langle \Phi^0 | H | \Phi^\Omega \rangle = E[\rho^{0\Omega}, \kappa^{0\Omega}, \kappa^{\Omega0*}] \langle \Phi^0 | \Phi^\Omega \rangle$ • $E[\rho^{0\Omega}, \kappa^{0\Omega}, \kappa^{\Omega0*}]$ is the same functional but of transition density matrices

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	000	0
Outline				

- Introduction
 - Breaking symmetries
- Wave-function methods
 - Symmetry unrestricted Hartree-Fock
 - Projection methods

Energy Density Functional methods Ingredients of the EDF method

- Pathologies
 - Particle number restoration
 - Angular momentum restoration

Introduction O	Wave-function methods	EDF methods • O	Pathologies 000	Conclusion O	
Ingredients of t	he EDF m <mark>etho</mark> o	ł			
Two lovel variation	al ways function	mathad			
		method			
1^{st} level: H	1 st level: HFB 2 nd level: projected HFB				
Trial WF : $ \Phi_0\rangle$ =	$=\prod_{\mu}eta_{\mu} 0 angle$	Trial WF: $ \Psi_a^{\lambda}\rangle = \frac{1}{c_{\lambda b}} \frac{d}{v}$	$\frac{d_{\lambda}}{dg} \int_{\mathcal{G}} dm(g) S_{ab}^{\lambda*}(g) R(g)$	$\langle g) \Phi_0 angle$	
Sym. break. $q =$	$ q e^{ig} eq 0$	Sym	. restor.		
$E_{ q }^{1^{\rm st}} = \langle \Phi_0 H$	$H \Phi_0 angle \qquad E_{\lambda}^{2^{ m nd}}$	$= \langle \Phi_0 H \Psi_a^\lambda \rangle = \frac{1}{c_{\lambda b}^* c_\lambda}$	$\frac{d_{\lambda}}{a} \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{\mathcal{G}} dm(g) S_{ab}^{\lambda*}(g)$	$\langle \Phi_0 H \Phi_g \rangle$	
\Downarrow			\Downarrow		
Standard Wick	Theorem	Generalized	Wick Theorem		
\Downarrow			↓		
$\langle \Phi_0 H \Phi_0 \rangle = E$	$[ho,\kappa,\kappa^*]$	$\langle \Phi_0 H \Phi_g \rangle = E[\rho]$	$^{0g},\kappa^{0g},\kappa^{g0*}]\langle\Phi_0 \Phi_g$	>	

Introduction O	Wave-function methods	EDF methods	Pathologies 000	Conclusion O
Ingredients of t	he EDE method			

Two-level energy density functional method			
1^{st} level: single-reference	2 nd level: multi-reference		
Trial state $ \Phi_0\rangle = \prod_{\mu} \beta_{\mu} 0\rangle$	Trial set of states $\{ \Phi_g\rangle \equiv R(g) \Phi_0\rangle; g \in v_{\mathcal{G}}\} \neq \Psi_a^{\lambda}\rangle$		
Sym. break. $q = q e^{i\varphi} \neq 0$	Sym. restor.		
$\mathcal{E}^{ ext{SR}}_{ q }\equiv\mathcal{E}[ho,\kappa,\kappa^*]$	$\mathcal{E}^{\lambda} \equiv \frac{1}{c_{\lambda b}^{*} c_{\lambda a}} \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{\mathcal{G}} dm(g) S_{ab}^{\lambda *}(g) \mathcal{E}[\rho^{0g}, \kappa^{0g}, \kappa^{g0} *] \langle \Phi_0 \Phi_g \rangle$		
${\cal E}^{\lambda} eq \langle \Phi_{0} H \Psi_{a}^{\lambda} angle$			
Bulk of correlations resummed into $\mathcal{E}[\rho^{0g}, \kappa^{0g}, \kappa^{g0*}]$			

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	0•	000	0
Ingredients of	the EDF method			

Two-level energy density funct	ional method				
1 st level: single-reference	2 nd level: multi-reference				
Trial state $ \Phi_0\rangle = \prod \beta_{\mu} 0\rangle$	Trial set of states $\{ \Phi_g\rangle \equiv R(g) \Phi_0\rangle; g \in v_{\mathcal{G}}\} \neq \Psi_a^{\wedge}\rangle$				
μ					
Relevant questions					
\bigcirc Is the WE \rightarrow EDE mapping	• Is the W/E , EDE manning efficient? Is it cafe? How is it constrained?				
Is the GWT-inspired map	ping $\mathcal{E}[\rho^{0g}, \kappa^{0g}, \kappa^{g0*}]$ appropriate?				
· · · · · · · · · · · · · · · · · · ·					
	${\cal E}^\lambda eq \langle \Phi_0 H \Psi^\lambda_a angle$				
Bulk of correlations resummed into $\mathcal{E}[\rho^{0g}, \kappa^{0g}, \kappa^{g0*}]$					

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	000	0
Outline				

- Introduction
 - Breaking symmetries
- Wave-function methods
 - Symmetry unrestricted Hartree-Fock
 - Projection methods
- Energy Density Functional methods
 Ingredients of the EDF method
- Pathologies
 - Particle number restoration
 - Angular momentum restoration

Particle number restoration pathologies

Originates from self interaction and self pairing in the EDF kernel

Workshop EDF

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	•00	0
	A REAL PROPERTY AND A REAL			

Particle number restoration pathologies

- Divergencies and finite steps [J. Dobaczewski et al., PRC76 (2007) 054315]
- **②** GWT-inspired $\mathcal{E}[
 ho^{0g},\kappa^{0g},\kappa^{g0\,*}]$ unsafe in EDF context
- Originates from self interaction and self pairing in the EDF kernel

Workshop EDF

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	00•	0

Angular momentum restoration

• The "Fourier" decomposition of MR kernel on SO(3) Irreps reads

$$\mathcal{E}[\rho^{0\Omega}, \kappa^{0\Omega}, \kappa^{\Omega0*}] \langle \Phi_0 | \Phi_{\Omega} \rangle = \sum_{lmk} c_{lm}^* c_{lk} \ D_{mk}^l(\Omega) \ \mathcal{E}^l$$

Wave-function methods : angular-momentum-restored energy

• After "tedious but straightforward calculations"

$$E^{l} = \frac{1}{2} \int d\vec{R} d\vec{r} \, V(r) \, \rho_{lmlm}^{[2]}(\vec{R},\vec{r}) = \int d\vec{R} \, \sum_{l'=0}^{2l} \, \mathcal{V}_{l}^{l'0}(R) \, \, C_{lml'0}^{lm} \mathcal{V}_{l'}^{0}(\hat{R})$$

• Mathematical property of the angular-momentum-restored density energy

EDF methods : angular-momentum-restored MR energy

• After "tedious but ... calculation"

$$\mathcal{E}^{l} = \int d\vec{R} \sum_{l'=0}^{??} \mathcal{E}^{l'??}_{l}(R) Y^{??}_{l'}(\hat{R})$$

T. Duguet, J. Sadoudi : arXiv:1001.0673v2

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	000	0
Outline				

- Introduction
 - Breaking symmetries
- Wave-function methods
 - Symmetry unrestricted Hartree-Fock
 - Projection methods
- Energy Density Functional methods
 Ingredients of the EDF method
- Pathologies
 - Particle number restoration
 - Angular momentum restoration

Introduction	Wave-function methods	EDF methods	Pathologies	Conclusion
0	000	00	000	٠
Conclusions				

Constraints on EDF

- Open up new path towards constraining MR-EDF calculations [T. Duguet, J. Sadoudi : arXiv:1001.0673v2]
- Find constrains for a bilinear Skyrme like EDF
- Find constrains for a general Skyrme like EDF