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Boundary Restoration of Chiral Symmetry†

B. Tiburzi∗1

One of the hallmark features of the theory of strong
interactions is spontaneous breaking of chiral symme-
try. While quark masses explicitly break the chiral
symmetry of the QCD action, the lightest quarks (up
and down) have masses that can be treated as a per-
turbation about the symmetric SU(2)L ⊗ SU(2)R chi-
ral limit. The formation of a chiral condensate by the
QCD vacuum in the chiral limit, namely < ψψ > �= 0,
spontaneously breaks the chiral symmetry down to the
vector subgroup, SU(2)V . This symmetry breaking
pattern along with the explicit breaking due to the
quark masses gives an explanation of the lightness of
the iso-triplet of pseudo-scalar pions because they must
be the emergent Goldstone bosons.

Lattice gauge theory provides a first principles
method for solving QCD numerically on finite Eu-
clidean space-time lattices. Strictly speaking, spon-
taneous symmetry breaking cannot occur in a finite
volume. In practice, the formation of a chiral conden-
sate on periodic lattices is determined by the size of
the pion Compton wavelength compared to the lat-
tice size2–4). In this work1), we explore a different
restoration of chiral symmetry. We consider the fate
of chiral symmetry on a Euclidean manifold with three
infinite directions, and one compact direction that, un-
like the periodic case, has a boundary. Specifically the
compact direction is subject to homogeneous Dirich-
let boundary conditions (DBCs), as have been utilized
recently in various lattice gauge theory computations.

The effect of a boundary on the chiral condensate
cannot be ascertained within chiral perturbation the-
ory, because the chiral condensate is determined by the
expression

< ψψ(x) >= −

Σ

4
< U(x) + U

†(x) > + · · · . (1)

Due to the unitarity of the coset manifold, the right-
hand side of this relation does not vanish at the bound-
ary in contradiction with the quark boundary condi-
tions satisfied on the left-hand side. A consistent treat-
ment of the chiral condensate in the presence of DBCs
necessitates including the dynamics of isoscalar scalar
mesons. For this reason, we employ the sigma model
which shares the same symmetry breaking pattern as
QCD with two light quark flavors, and provides the
simplest model of spontaneous chiral symmetry break-
ing. The parameter Σ in Eq. (1) becomes a field Σ(x)
satisfying DBCs. The chiral condensate < ψψ(x) > is
determined by minimizing the action to find the vac-
uum configuration.
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An example of our results is shown in Fig. 1, which
depicts the effect of DBCs on the volume-averaged

value of the chiral condensate, defined by < ψψ > =
1
L

∫ L

0 dx < ψψ(x) >. In the limit of an asymptoti-
cally large extent L, the volume-averaged chiral con-
densate tends to the infinite volume value, however,
the approach to asymptopia is slow. The asymptotic
condensate can be determined in closed form, and av-
eraged over the compact direction to produce

< ψψ > =< ψψ >

[
1−

4 log 2

mσL
+ · · ·

]
, (2)

from which we see power-law scaling controlled by the
Compton wavelength of the sigma meson.

Fig. 1. Ratio of the volume-averaged condensate in the

sigma model < ψψ > to the infinite volume condensate

< ψψ > plotted as a function of the finite extent L.

The dotted curve shows the asymptotic formula in Eq.

(2). Below L ≈ 2 fm, the sigma model vacuum energy

is minimized by < ψψ(x) >= 0 for all x, and chiral

symmetry is completely restored. The cusp is likely

softened by including higher-lying sigma states.

Our sigma model results show that one should be
cautious in interpreting results from lattice computa-
tions employing DBCs on small lattices. To establish
the credibility of lattice computations with Dirichlet
boundaries, one requires a lattice computation of the
chiral condensate, either locally or volume averaged,
which will ultimately reveal the extent to which chiral
symmetry is restored in the presence of a boundary. In
turn, frustration of the chiral condensate via Dirich-
let boundaries may enable us to learn more about the
mechanism that underlies spontaneous chiral symme-
try breaking.
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Cutoff effects on lattice nuclear forces†

T. Doi∗1

Nuclear forces, the interactions among nucleons,
serve as the cornerstone in nuclear physics. While they
have been traditionally determined through the scat-
tering experiments, their theoretical understanding by
using the fundamental theory, quantum chromody-
namics (QCD), has not been established yet. Recently,
a novel approach was proposed to determine nuclear
forces on a lattice1,2). In this approach, now called
the HAL QCD method, nuclear forces are directly ob-
tained from Nambu-Bethe-Salpeter wave functions cal-
culated on the lattice. The method has been success-
fully extended to general hadron interactions such as
three-nucleon forces3). See Ref.4) for a recent review.
For the quantitative determination of nuclear forces,

systematic uncertainties in lattice simulations should
be carefully examined, such as the effect of discretiza-
tion artifacts. There have been, however, no work that
performs the continuum extrapolation on nuclear in-
teractions. The aim of this work is to perform the first
systematic study for the lattice cutoff dependence of
nuclear interactions.

We employ Nf = 2 configurations with clover
fermion generated by CP-PACS collaboration5). The
measurements are performed at three lattice spacings,
a = 0.2150, 0.1555, 0.1076 fm. The physical lattice size
is L3×T � (2.5 fm)3×5 fm, and the hadron masses are
(mπ,mN ) � (1.1, 2.2) GeV. The computational cost in
the Wick and color/spinor contractions is reduced by
the unified contraction algorithm6). For details about
the simulation parameters, see Doi (2013)7).

In Fig. 1, we plot the nuclear central potential in 1S0

channel for each lattice cutoff. We observe that cutoff
dependence is nonnegligible at short distances, while
it is suppressed at long distances. This is a natural
consequence of the discretization being an intrinsically
short-range effect. It is also interesting that repulsive
core is enhanced on a finer lattice, which is consistent
with the study on the operator product expansion8).

Although the lattice cutoff dependence on potentials
looks sizable at short distances, such effect is expected
to be suppressed in physical observables such as phase
shifts and scattering length, because of the phase space
factor of ∝ r2, as is shown in the inset of Fig. 1.

In order to quantitatively study the cutoff effect on
physical observables, we fit the potential and solve the
Schrödinger equation in infinite volume. In Fig. 2, we
show the preliminary results for the scattering length
against the lattice spacing a, with only a statistical er-
ror. Because the scattering length represents the low-
energy phenomena, the cutoff dependence is found to
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Fig. 1. Central potentials VC(r) in 1S0 channel. Inset

shows r2VC(r) to include phase space factor. Solid lines

correspond the fit for the potentials.

Fig. 2. Scattering length in 1S0 channel against lattice

spacing a. Blue point corresponds to the result in

the continuum limit obtained by linear extrapolation

against a.

be negligible compared to the statistical errors. De-
tailed studies for the systematic uncertainties on phase
shifts and scattering length are in progress.
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