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Heisenberg uncertainty relation revisited†

K. Fujikawa∗1

Kennard and Robertson formulated the uncertainty
relation which appears in any textbook on quantum
mechanics

σ(A)σ(B) ≥ 1

2
|⟨[A,B]⟩|. (1)

Another important development in the history of un-
certainty relations is the analysis of Arthurs and
Kelly1). They introduce the measuring apparatus M
for A, and N for B, respectively, with [M, N ] = 0. The
notion of unbiased measurement is important in their
analysis, which is defined by

⟨Mout⟩ = ⟨A⟩ (2)

for any state of the system ψ in the total Hilbert space
of the system and apparatus |ψ⟩⊗|ξ⟩ in the Heisenberg
picture. Here variables M and N (and also A and B)
stand for the variables before the measurement, and
the variable Mout = U†MU stands for the apparatus
M after measurement.

Traditionally, it has been common to take the rela-
tion2)

σ(Mout − A)σ(Bout − B) ≥ 1

2
|⟨[A,B]⟩| (3)

as the naive Heisenberg error-disturbance relation; we
use the adjective ”naive” since no reliable derivation
of this relation is known. An elegant experiment of
spin measurement by J. Erhart et al.3), invalidated
the naive Heisenberg-type error-disturbance relation,
which initiated the recent activities on uncertainty re-
lations.

It is shown that all the uncertainty relations are de-
rived from suitably defined Robertson’s relation4). We
start with Robertson’s relation

σ(Mout − A)σ(Bout − B)

≥ 1

2
|⟨[Mout − A,Bout − B]⟩| (4)

and use the triangle inequality

σ(Mout − A)σ(Bout − B)

≥ 1

2
{|⟨[A,B]⟩| − |⟨[A,Bout − B]⟩|

−|⟨[Mout − A,B]⟩|}, (5)

where we used [Mout, Bout] = [M,B] = 0. Using the
variations of Robertson’s relation, we obtain2)

σ(Mout − A)σ(Bout − B) + σ(Mout − A)σ(B)
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+σ(A)σ(Bout − B) ≥ 1

2
|⟨[A,B]⟩|, (6)

and5)

{σ(Mout − A) + σ(A)}{σ(Bout − B) + σ(B)}
≥ |⟨[A, B]⟩|. (7)

We thus conclude that all the known universally valid
relations are the secondary consequences of Robert-
son’s relation. Also, the saturation of Robertson’s re-
lation is a necessary condition of the saturation of uni-
versally valid uncertainty relations. If one assumes the
unbiased measurement and disturbance, one obtains
(3).

By assuming unbiased joint measurements, we con-
clude6)

⟨[A,B]⟩ = ⟨[Mout, Nout]⟩ = 0 (8)

which is a contradiction since ⟨[A,B]⟩ ̸= 0 in general.
Similarly, one concludes6)

⟨[A,B]⟩ = ⟨[Mout, Bout]⟩ = 0 (9)

if one assumes the precise measurement of A and the
unbiased disturbance of B which implies ⟨Bout −B⟩ =
0 for all ψ. Here Bout = U†(B ⊗ 1)U stands for the
variable B after the measurement of A. Note that
[Mout, Bout] = [M,B] = 0.

We interpret the algebraic inconsistency (9) as an
indication of the failure of the assumption of unbiased
disturbance of B for the precise projective measure-
ment of A, if all the operators involved are well-defined.
Thus the naive relation (3) fails. On the other hand,
the Heisenberg error-error relation

ϵ(Mout − A)ϵ(Nout − B) ≥ 1

2
|⟨[A, B]⟩| (10)

and the Arthurs-Kelly relation

σ(Mout)σ(Nout) ≥ |⟨[A,B]⟩| (11)

are expected to be valid as conditionally valid uncer-
tainty relations. In this case the apparatus variable
Nout becomes singular for the precise measurement of
A, namely, Mout−A → 0 if the unbiasedness condition
⟨Nout − B⟩ = 0 is imposed.
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Note on intersecting branes in topological strings

T. Kimura∗1

The intersection of branes is an important object
in string theory, in order to study non-perturbative
aspects of branes, and also its applicatioins to quantum
field theory. In this report we investigate some aspects
of the intersecting branes in topological string theory,
especially through its matrix model description.
We consider the topological B-model on the Calabi-

Yau threefold uv − H(p, x) = 0 with H(p, x) = p2 −
W ′(x)2 − f(x). This geometry realizes at the large N
limit of the matrix model with the potential function
W (x). There are seemingly two kinds of non-compact
branes in the topological B-model, which correspond to
the characteristic polynomial and the external source
in the matrix model.1) They play a role of the cre-
ation operator of branes for x and p coordinates, re-
spectively. By considering both kinds of the branes
simultaneously, we can discuss intersection of branes
in the B-model. The corresponding matrix model par-
tition function ΨN,M ({aj}; {λα}) is given by

∫

N×N

dX e−
1
gs

TrW (X)+TrAX
M∏
α=1

det(λα −X) . (1)

This is the M -point function of characteristic polyno-
mials in N × N Hermitian matrix model with exter-
nal source A. In order to evaluate the partition func-
tion (1), we first rewrite it only in terms of eigenvalues
by integrating out the angular part of the matrix X.
Then, after some calculations, we obtain the determi-
nantal expression of the partition function

1

∆(a)∆(λ)
det

(
Qj−1(ak) QN+α−1(ak)
Pj−1(λβ) PN+α−1(λβ)

)
, (2)

where ∆(x) =
∏

i<j(xi − xj) is the Vandermonde de-

terminant, and Pk(x) = xk + · · · is arbitrary k-th
monic polynomial. The function Qk(a) is the Fourier

(Laplace) transform of Pk(x) e
− 1

gs
W (x). Therefore,

from the expression (2), we can see an explicit duality

between �a and �λ through the Fourier transformation.
In terms of the topological strings, this duality reflects
the symplectic invariance of the canonical pair (p, x)
in the B-model, which is also seen as the open/closed
string duality. We also note that this kind of symplec-
tic invariance appears quite generally in the topological
expansion of the spectral curve.
If we apply the Gaussian potential, two functions

Pk(x) and Qk(x) are essentially equivalent, since it is
self-dual against the Fourier transformation. In this
case we can rewrite the partition function in terms of
U(N)×U(M) bifundamental chiral fermions, which are
seen as effective degrees of freedom on the intersecting
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branes. The corresponding effective action is given by

Seff =
gs
2
ψα
i ψ̄

α
j ψ

β
j ψ̄

β
i +TrAψαψ̄α − TrΛψjψ̄j , (3)

In this expression the duality between A and Λ is man-
ifest. In this action the full symmetry of U(N)×U(M)
is partially broken due to the source terms.
Let us then comment on the integrability of the

brane intersection partition function (2). This kind of
determinantal formula generically plays a role as the
τ -function,2) and satisfies the Toda lattice equation by
taking the equal parameter limit. To show that, we
now consider the equal position limit of (2) as aj → a
and λα → λ. Then we have

N−1∏

j=0

1

j!

M−1∏
α=0

1

α!
det

(
Q

(k−1)
j−1 (a) Q

(k−1)
N+α−1(a)

P
(β−1)
j−1 (λ) P

(β−1)
N+α−1(λ)

)
.(4)

This is just a hybritized version of Wronskian. If we
apply the simplest choice Pk(x) = xk, Qk(a) is just
given as k-th derivative of the generalized Airy func-
tion

Qk(a) =

(
d

da

)k ∫
dx e−

1
gs

W (x)+ax . (5)

Applying the Jacobi identity for determinants to the
expression (4), we obtain the following 3-term rec-
curence relations

Ψ̃N+1,M · Ψ̃N−1,M(
Ψ̃N,M

)2 =
N

M

∂2

∂a2
log Ψ̃N,M , (6)

Ψ̃N,M+1 · Ψ̃N,M−1(
Ψ̃N,M

)2 =
∂2

∂a∂λ
log Ψ̃N,M . (7)

where we have rescaled the partition function as
Ψ̃N,M (a, λ) = e−λΨN,M (a, λ). The equations (6) and
(7) are the Toda lattice equations in one and two di-
mensions. This means that the brane intersection par-
tition function is the τ -function for the Toda lattice
hierarchy in both senses. We can also introduce in-
finitely many “time” variables for this τ -function in
the Miwa coordinate

tn =
1

n
TrA−n , t̃n =

1

n
TrΛ−n . (8)

If we take the large N limit of the matrix model, which
corresponds to the continuum limit of the Toda lattice
equation, we obtain the KdV/KP integrable equations.
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