Non-Lagrangian theories from brane junctions [†]

L. Bao,^{*1} V. Mitev,^{*2} E. Pomoni,^{*3} M. Taki^{*4} and F. Yagi^{*5}

In a seminal article¹⁾, Gaiotto argued that a large class, called class S, of $\mathcal{N} = 2$ superconformal field theories (SCFT) in four dimensions (4D) can be obtained by a twisted compactification of a 6D (2,0) SCFT on a Riemann surface of genus g with n punctures. The building blocks of the class S theories are tubes and pairs of pants that correspond to gauge groups and matter multiplets, respectively. Subsequently, a relation between the partition functions of the $\mathcal{N} = 2$ SU(N) gauge theories and the correlation functions of the 2D A_{N-1} Toda CFTs was proposed.²⁾ Computation of 2-point and 3-point functions in a CFT would in principle yield a complete understanding of the n-point functions.

It is important to note that there is a fundamental difference between the SU(2) and the SU(N), N > 2, cases. For the SU(2) quiver gauge theories²⁾ that are related to the 2D Liouville CFT, there is only one type of puncture on the Riemann surface and hence the Liouville CFT has only one class of 2D 3-point functions to be calculated. On the other hand, the SU(N) case with N > 2 has more than one kind of puncture. So far, the case with three special SU(N) punctures T_N has remained elusive, since neither the T_N Nekrasov partition functions nor the Toda three-point correlators are known. The situation is further aggravated by the fact that the corresponding 4D theories do not have a Lagrangian description. Even though there is no known Lagrangian description of the 4D T_N theories, we are able to obtain the partition functions for their 5D uplift³) using topological strings on the dual geometry of the 5-brane junctions.

In this paper, we compute the Nekrasov partition functions of the T_N junctions as refined topological string partition functions.⁴⁾ At this point, we make use of the quite recent conjecture of Iqbal and Vafa⁵⁾ that says that the 5D superconformal index, which is the partition function on $S^4 \times S^1$, can be obtained from the 5D Nekrasov partition function and thus from the topological string partition function

$$\mathcal{I}^{5D} = \int da \, |Z_{\text{Nek}}^{5D}(a)|^2 \propto \int da \, |Z_{\text{top}}(a)|^2. \tag{1}$$

The E_6 superconformal index is obtained from the T_3 Nekrasov partition function by using the idea presented in Iqbal and Vafa,⁵⁾ and we find that the results

- $^{\ast 2}~$ Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin
- *³ DESY Theory Group
- *4 RIKEN Nishina Center

coincide with those of Kim et al.,⁶⁾ computed via localization. When parallel external 5-brane legs appear in the toric web diagram, the corresponding partition functions contain extra degrees of freedom. In contrast to the massive spectrum in 5D, which forms a representation of the Wigner little group $SU(2) \times SU(2)$, referred to as the *full spin content representation*, these extra states do not transform as a correct representation under the Poincaré symmetry. Therefore, we call them non-full spin content contributions. We interpret this part as the contribution to the extra degrees of freedom appearing from the parallel 5-branes explained above. It should therefore be removed. To obtain the superconformal index from the topological string partition function, we have to eliminate all the non-full spin content from the partition function. Schematically, the partition function can be expressed as a sum of Young diagrams assigned to the product of strip geometries as

$$Z_{T_N} = \frac{1}{Z_{\text{non-full spin}}} \sum_{\boldsymbol{Y}} \prod_{i=1}^N Z_i^{\text{strip}}(\boldsymbol{Y}).$$
(2)

The factor $Z_{\text{non-full spin}}$ is the BPS spectrum, which does not form a representation of the Poincaré symmetry, and Z^{strip} is the partition function of the strip geometry.

Finally, the 5D version of the AGTW relation, which suggests that the 5D Nekrasov partition functions are equal to the conformal block of q-deformed W_N Toda, implies the following relation between the superconformal index and the correlation functions of the corresponding q-deformed Toda field theory:

$$\mathcal{I}^{5D}(x,y) = \int [da] \left| Z_{\text{Nek}}^{5D}(a,m,\beta,\epsilon_{1,2}) \right|^2 \propto \left\langle V_{\alpha_1}(z_1) \cdots V_{\alpha_n}(z_n) \right\rangle_{q-\text{Toda}}.$$
(3)

This is an important entry in the dictionary of the 5D/2D AGTW correspondence. The partition functions of the T_N brane junctions predict, up to an overall coefficient, the corresponding DOZZ formula for the three-point functions.

References

- D. Gaiotto: JHEP **1208**, 034 (2012) [arXiv:0904.2715 [hep-th]].
- L. F. Alday, D. Gaiotto, and Y. Tachikawa, *Lett.Math.Phys.* 91, 167–197 (2010).
- F. Benini, S. Benvenuti, and Y. Tachikawa, *JHEP* 0909, 052 (2009).
- 4) A. Iqbal, C. Kozcaz, and C. Vafa, JHEP 10, 069 (2009).
- 5) A. Iqbal and C. Vafa, arXiv:1210.3605.
- H.-C. Kim, S.-S. Kim, and K. Lee, JHEP 1210, 142 (2012).

[†] arXiv:1301.0721

^{*1} Chalmers University of Technology

 $^{^{\}ast 5}$ $\,$ Korea Institute for Advanced Studyr