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Unitarity bounds from generalised Käbler identities

J. Schmude∗1

A textbook result in Kähler geometry relates the
de Rham with the Dolbeault Laplacian, ∆ = 2∆∂̄ .
The topic of this note is a similar identity in the case
of Sasaki-Einstein manifolds and its application in to
the unitarity bounds in superconformal gauge theories
(SCFTs):

∆ = 2∆∂̄b
− £2

η − 2ı(n − d0)£η + 2LΛ

+ 2(n − d0)LηΛη + 2ı(Lη∂̄∗
b − ∂̄bΛη). (1)

The right hand side features the tangential Cauchy-
Riemann operator, the Lefschetz operator, and the ac-
tion of the Reeb vector. The equation ∆ = 2∆∂̄ can
be derived from the Kähler identities, commutators be-
tween the Dolbeault and Lefschetz operators and their
adjoints. The proof of equation 1 follows a similar
route by obtaining Kähler-like identities that hold on
Sasaki-Einstein manifolds. Those identities as well the
details of the proof were worked out in1).

Equation 1 finds application in the AdS/CFT corre-
spondence. Freund-Rubin compactification on Sasaki-
Einstein manifolds yields supergravity duals of super-
conformal field theories. The AdS/CFT dictionary
links the conformal energy of SCFT operators to the
spectrum of ∆, their R-charge to that of the Lie-
derivative along the Reeb vector, £η. The conformal
energy, R-charge, and spin of any SCFT operator have
to satisfy the unitarity bounds4,5), which should be re-
flected on the supergravity side in the spectrum of ∆.
Indeed, it is possible to re-derive the unitarity bounds
from supergravity when using equation 1 in conjunc-
tion with the calculations in2,3).

This leads us to the spectral problem for ∆. De-
compose the cotangent bundle as T ∗S = D∗ ⊕ η =
Ω1,0⊕Ω0,1⊕η and consider a k-form ω with £ηω = ıq,
q ≥ 0, and d0 ≤ n. Clearly all terms on the right hand
side of 1 are positive definite except for the mixed
term M = ı(Lη∂̄∗

b − ∂̄bΛη) = N + N∗. M is self-
adjoint and its spectrum is real. Moreover, N2 = 0
and N(

∧∗
D∗) ⊂

∧∗
D∗ ∧ η and N(

∧∗
D∗ ∧ η) = 0.

That is, N maps horizontal to vertical forms and an-
nihilates the latter. N∗ behaves accordingly and it
follows that ⟨ω, Mω⟩ vanishes if ω is horizontal or ver-
tical. This is also the case if ω is neither horizontal
nor vertical yet holomorphic in the ∂̄b-sense. As long
as we restrict to one of these cases, 1 takes the form of
a bound on the spectrum of ∆.

This was conjectured and partially shown in the con-
text of the calculations of the superconformal index
in2,3). Here, the spectrum was constructed from prim-
itive elements of Ωp,q. For such forms, 1 clearly implies

∆ ≥ q2 + 2q(n − d0) (2)
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with equality if and only if ∂̄bω = ∂̄∗
b ω = 0. In the

Kähler case, the latter of these is implied by transver-
sality — d∗ω = 0. Here however, d∗ω = 0 leads only
to the vanishing of the horizontal component of ∂̄∗

b ω.
Indeed,

∂∗
b ω = ıLηΛω, ∂̄∗

b ω = −ıLηΛω, (3)

which vanishes since ω was assumed to be primitive.
Assuming that every element of Hp,q

∂̄b
(S) has a repre-

sentative closed under ∂̄∗
b , the bound 2 is saturated

on the elements of Hp,q

∂̄b
(S). These are the forms that

correspond to the short multiplets in the SCFT, and
2 together with the expressions for the derived eigen-
modes of ∆ given in2,3) allows to recover the unitarity
bounds from supergravity.

Since we found Sasaki-Einstein equivalents of both
∆ = 2∆∂̄ and the Kähler identities, it is tempting to
ask how much more of Kähler geometry can be gener-
alized. For example, since ∆∂̄ is self-adjoint and ellip-
tic, one can show that Ωk

C = Hk ⊕ ∆∂̄(Ωk
C) which im-

plies Hodge’s theorem. Similarly, the relation between
the de Rham and Hodge Laplacians allows for an iso-
morphism between the respective spaces of harmonic
forms. However, ∆∂̄b

is not elliptic. Recall that ∆∂̄b
is

elliptic if the symbol σ∆∂̄b
: Hom(Ωk

C,Ωk
C) ⊗ S2(T ∗S)

maps any non-zero ω ∈ T ∗S to an automorphism on
Ωk

C. When calculating the symbol one essentially keeps
only those terms of ∆∂̄b

that are of highest order in
derivatives. In the context of the tangential Cauchy-
Riemann operator, this means that ∂b and ∂̄b can be
taken to be anticommuting and that the overall result
is essentially the same as for the symbol of the Dol-
beault Laplacian on a Kähler manifold. It turns out,
that σ∆∂̄b

(η) = 0 and ∆∂̄b
is not elliptic, yet transver-

sally elliptic.
An obvious problem of interest is the extension of the

results presented here beyond the Sasaki-Einstein case.
As long as there is a dual SCFT, there is a unitarity
bound meaning that there should be some equivalent
of 1.

References
1) J. Schmude, arXiv:1308.1027 [hep-th].
2) R. Eager and J. Schmude, arXiv:1305.3547 [hep-th].
3) R. Eager, J. Schmude and Y. Tachikawa, arXiv:1207.0573

[hep-th].
4) J. Kinney, J. M. Maldacena, S. Minwalla and

S. Raju, Commun. Math. Phys. 275, 209 (2007) [hep-
th/0510251].

5) J. Bhattacharya, S. Bhattacharyya, S. Minwalla and
S. Raju, JHEP 0802, 064 (2008) [arXiv:0801.1435 [hep-
th]].

Superconformal indices for gauge duals of AdS4 × SE7

J. Schmude∗1

The superconformal index1,2) of a three-dimensional
superconformal field theory can be expressed as the
trace over all operators in the theory weighted by their
fermion number

I(t, zi) = tr[(−1)F tϵ+j3zhi
i ]. (1)

Here ϵ is the operator dimension, j3 is the spin of the
operator, F is its fermion number, and hi label the
charges of the operator under global symmetries.

In this note we summarise3) the derivation of the
gravity superconformal index for any theory of the
form AdS4 × SE7. Previously the supergravity in-
dex was computed for the homogenous Sasaki-Einstein
seven-manifolds using known Kaluza-Klein spectra4).
However, to match the field theory index and the su-
pergravity index, several of the Kaluza-Klein modes
had to be dropped. Since the spectrum has not been
well tested, the authors suggested that the Kaluza-
Klein spectrum should be revisited. We find that a
careful analysis of the Kaluza-Klein modes agrees with
known results about field theory index. Our general
form of the supergravity index succinctly reproduces
previous computations of the gravity index4). We find
complete agreement with previous large-N computa-
tions of the index4–6).

We construct the Kaluza-Klein multiplets on AdS4

from various tensors defined on the Sasaki-Einstein
manifold following the methodology of7). Our analy-
sis focuses on generic Sasaki-Einstein manifolds. Much
of our analysis builds upon previous work on Kaluza-
Klein spectroscopy for coset manifolds.

Multiplet shortening and the short multiplets con-
tributing to the index can be described using the tan-
gential Cauchy-Riemann operator ∂̄b and the associ-
ated Kohn-Rossi cohomology groups Hp,q

∂̄b
. In general,

the cotangent bundle over a Sasaki-Einstein manifold
Y can be decomposed as

ΩY = Cη ⊕ Ω1,0
Y ⊕ Ω0,1

Y . (2)

The operator ∂̄b is the projection of the exterior deriva-
tive on Ω0,1

Y , the cohomology of this complex is Hp,q

∂̄b
.

The Kohn-Rossi cohomology groups are isomorphic to
Hq(X,∧pΩ′

X) defined on the cone, where Ω′
X is the

part of the holomorphic cotangent bundle ΩX perpen-
dicular to the dilatation vector field. Our main re-
sult is a formula for the gravity superconformal in-
dex as a trace over linear combinations of the groups
Hq(X,∧pΩ′

X).
Table 1 lists the multiplicity of each short multi-

plet appearing in supergravity solutions of the form
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AdS4 × SE7 and their contribution to the supercon-
formal index. When calculating the index, only states
with

{Q,S} = ϵ − j3 − y = 0 (3)

contribute, where y is the R-charge. An element f of
cohomology has R-charge LDf = 2iDf. Here LD de-
notes the Lie derivative along the dilation vector field
and 2D is its corresponding eigenvalue. We normalize
each multiplet so that its primary has R-charge y. The
R-charge y differs from the R-charge 2D of the corre-
sponding cohomology element by a constant shift.

Table 1. Short multiplets and their contribution

Multiplet (ϵ, j3, y) Multiplicity Index

s. graviton (y + 2, 1, y) H0(X,∧3Ω′
X) −ty+4

s. gravitino (y + 3
2
, 1

2
, y) H0(X, Ω′

X) ty+3

s. vector Z (y + 1, 0, y) H1(X, Ω′
X) −ty+2

s. vector A (y + 1, 0, y) H0(X,∧2Ω′
X) −ty+2

hyper (y, 0, y) H1(X,∧2Ω′
X) ty

hyper (y, 0, y) H2(X, Ω′
X) ty

hyper (y, 0, y) H0(X,OX) ty

Summing the contributions of the short multiplets,
we find that the single particle supergravity index is

1 + Is.t.(t) =
∑

tr[t2D
�� H0(X,OX)

⊖H0(X,∧2Ω′
X) ⊕ H1(X,∧2Ω′

X)

⊕t2H0(X, Ω′
X) ⊖ t2H1(X, Ω′

X) ⊕ t2H2(X, Ω′
X)

⊖t2H0(X,∧3Ω′
X)]. (4)

The superconformal index has proven to be a pow-
erful tool in checking proposed dualities. All proposed
field theory duals to Saski-Einstein seven manifolds
can be tested by computing the field theory index and
comparing it with the above gravity index. Currently,
there is no general procedure for constructing the field
theory dual to a general Sasaki-Einstein seven man-
ifold. One hopes that the superconformal index will
help explore new holographic dualities.
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