Unitarity bounds from generalised Käbler identities

J. Schmude^{*1}

A textbook result in Kähler geometry relates the de Rham with the Dolbeault Laplacian, $\Delta = 2\Delta_{\bar{\partial}}$. The topic of this note is a similar identity in the case of Sasaki-Einstein manifolds and its application in to the unitarity bounds in superconformal gauge theories (SCFTs):

$$\Delta = 2\Delta_{\bar{\partial}_b} - \pounds_{\eta}^2 - 2\imath(n - d^0)\pounds_{\eta} + 2L\Lambda + 2(n - d^0)L_{\eta}\Lambda_{\eta} + 2\imath(L_{\eta}\bar{\partial}_b^* - \bar{\partial}_b\Lambda_{\eta}).$$
(1)

The right hand side features the tangential Cauchy-Riemann operator, the Lefschetz operator, and the action of the Reeb vector. The equation $\Delta = 2\Delta_{\bar{\partial}}$ can be derived from the Kähler identities, commutators between the Dolbeault and Lefschetz operators and their adjoints. The proof of equation 1 follows a similar route by obtaining Kähler-like identities that hold on Sasaki-Einstein manifolds. Those identities as well the details of the proof were worked out in¹.

Equation 1 finds application in the AdS/CFT correspondence. Freund-Rubin compactification on Sasaki-Einstein manifolds yields supergravity duals of superconformal field theories. The AdS/CFT dictionary links the conformal energy of SCFT operators to the spectrum of Δ , their *R*-charge to that of the Liederivative along the Reeb vector, \mathcal{L}_{η} . The conformal energy, *R*-charge, and spin of any SCFT operator have to satisfy the unitarity bounds^{4,5)}, which should be reflected on the supergravity side in the spectrum of Δ . Indeed, it is possible to re-derive the unitarity bounds from supergravity when using equation 1 in conjunction with the calculations in^{2,3)}.

This leads us to the spectral problem for Δ . Decompose the cotangent bundle as $T^*S = D^* \oplus \eta = \Omega^{1,0} \oplus \Omega^{0,1} \oplus \eta$ and consider a k-form ω with $\mathcal{L}_{\eta}\omega = iq$, $q \geq 0$, and $d^0 \leq n$. Clearly all terms on the right hand side of 1 are positive definite except for the mixed term $M = i(L_\eta \bar{\partial}_b^* - \bar{\partial}_b \Lambda_\eta) = N + N^*$. M is self-adjoint and its spectrum is real. Moreover, $N^2 = 0$ and $N(\bigwedge^* D^*) \subset \bigwedge^* D^* \wedge \eta$ and $N(\bigwedge^* D^* \wedge \eta) = 0$. That is, N maps horizontal to vertical forms and annihilates the latter. N^* behaves accordingly and it follows that $\langle \omega, M\omega \rangle$ vanishes if ω is neither horizontal nor vertical yet holomorphic in the $\bar{\partial}_b$ -sense. As long as we restrict to one of these cases, 1 takes the form of a bound on the spectrum of Δ .

This was conjectured and partially shown in the context of the calculations of the superconformal index $in^{2,3}$. Here, the spectrum was constructed from primitive elements of $\Omega^{p,q}$. For such forms, 1 clearly implies

$$\Delta \ge q^2 + 2q(n-d^0) \tag{2}$$

with equality if and only if $\bar{\partial}_b \omega = \bar{\partial}_b^* \omega = 0$. In the Kähler case, the latter of these is implied by transversality — $d^*\omega = 0$. Here however, $d^*\omega = 0$ leads only to the vanishing of the horizontal component of $\bar{\partial}_b^*\omega$. Indeed,

$$\partial_b^* \omega = \imath L_\eta \Lambda \omega, \quad \bar{\partial}_b^* \omega = -\imath L_\eta \Lambda \omega, \tag{3}$$

which vanishes since ω was assumed to be primitive. Assuming that every element of $H^{p,q}_{\bar{\partial}_b}(S)$ has a representative closed under $\bar{\partial}^*_b$, the bound 2 is saturated on the elements of $H^{p,q}_{\bar{\partial}_b}(S)$. These are the forms that correspond to the short multiplets in the SCFT, and 2 together with the expressions for the derived eigenmodes of Δ given in^{2,3)} allows to recover the unitarity bounds from supergravity.

Since we found Sasaki-Einstein equivalents of both $\Delta = 2\Delta_{\bar{\partial}}$ and the Kähler identities, it is tempting to ask how much more of Kähler geometry can be generalized. For example, since $\Delta_{\bar{\partial}}$ is self-adjoint and elliptic, one can show that $\Omega^k_{\mathbb{C}} = \mathcal{H}^k \oplus \Delta_{\bar{\partial}}(\Omega^k_{\mathbb{C}})$ which implies Hodge's theorem. Similarly, the relation between the de Rham and Hodge Laplacians allows for an isomorphism between the respective spaces of harmonic forms. However, $\Delta_{\bar{\partial}_b}$ is not elliptic. Recall that $\Delta_{\bar{\partial}_b}$ is elliptic if the symbol $\sigma_{\Delta_{\bar{\partial}_b}} : Hom(\Omega^k_{\mathbb{C}}, \Omega^k_{\mathbb{C}}) \otimes S^2(T^*S)$ maps any non-zero $\omega \in T^*S$ to an automorphism on $\Omega^k_{\mathbb{C}}.$ When calculating the symbol one essentially keeps only those terms of $\Delta_{\bar{\partial}_h}$ that are of highest order in derivatives. In the context of the tangential Cauchy-Riemann operator, this means that ∂_b and $\overline{\partial}_b$ can be taken to be anticommuting and that the overall result is essentially the same as for the symbol of the Dolbeault Laplacian on a Kähler manifold. It turns out, that $\sigma_{\Delta_{\bar{\partial}_{b}}}(\eta) = 0$ and $\Delta_{\bar{\partial}_{b}}$ is not elliptic, yet transversally elliptic.

An obvious problem of interest is the extension of the results presented here beyond the Sasaki-Einstein case. As long as there is a dual SCFT, there is a unitarity bound meaning that there should be some equivalent of 1.

References

- 1) J. Schmude, arXiv:1308.1027 [hep-th].
- 2) R. Eager and J. Schmude, arXiv:1305.3547 [hep-th].
- R. Eager, J. Schmude and Y. Tachikawa, arXiv:1207.0573 [hep-th].
- 4) J. Kinney, J. M. Maldacena, S. Minwalla and S. Raju, Commun. Math. Phys. 275, 209 (2007) [hepth/0510251].
- J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, JHEP 0802, 064 (2008) [arXiv:0801.1435 [hepth]].

^{*1} RIKEN Nishina Center