## Dynamics of X-ray–emitting ejecta in the oxygen-rich supernova remnant Puppis A revealed by the XMM-Newton RGS<sup>†</sup>

S. Katsuda,<sup>\*1</sup> Y. Ohira,<sup>\*2</sup> K. Mori,<sup>\*3</sup> H. Tsunemi,<sup>\*4</sup> H. Uchida,<sup>\*5</sup> K. Koyama,<sup>\*4,\*5</sup> and T. Tamagawa<sup>\*1</sup>

The Galactic supernova remnant (SNR), Puppis A, is one of the brightest X-ray SNRs with energies below 1 keV. A number of oxygen-rich, fast-moving, optically emitting ejecta knots (OFMKs) are detected in this SNR. Interestingly, all these OFMKs are located in the eastern, mostly northeastern (NE) portion,<sup>1</sup>) whereas a neutron star is running in the opposite direction of the OFMKs<sup>2</sup>. Given that this ejecta-neutron star recoil phenomenon is consistent with the recent promising supernova (SN) explosion model for explaining core-collapse SN explosions,<sup>3</sup> Puppis A is an extremely important target for the study of SN explosion mechanisms.

Since significant fractions of SN ejecta are often seen only in X-rays, it is important to reveal ejecta structures in the X-ray domain. In fact, mapping observations with X-ray observatories in orbit, i.e., *XMM*-*Newton*, *Chandra*, and *Suzaku* have recently recognized signatures of ejecta. These ejecta are found to be localized in three locations. All of them are located in the NE quadrant, further supporting the one-sided ejection of SN debris. Interestingly, one of them showed a hint of blueshifted K-shell line emission<sup>4</sup>). However, the moderate spectral resolution of these X-ray charge coupled devices (CCDs) used in the previous observations did not allow for conclusive arguments.

To reveal the precise Doppler velocities of two of the X-ray ejecta features (hereafter, the ejecta knot and the ejecta filament), we performed an XMM-Newton observation of Puppis A on October 20, 2012. We primarily used the Reflection Grating Spectrometer  $(RGS^{5})$ . The RGS is usually considered to be unsuitable for extended sources such as Galactic SNRs, because it is a slitless spectrometer, and hence, the extended sources suffer from energy resolution degradation. However, if the angular size of the target is sufficiently small (less than a few arc minutes) and is brighter than its surroundings, it is possible to obtain high-resolution spectra for such a target. Fortunately, our targets allow for an order-of-magnitude higher resolution spectra  $(E/\Delta E \sim 150)$  than nondispersive CCDs  $(E/\Delta E \sim 20)$ .

- \*4 Department of Earth and Space Science, Graduate School of Science, Osaka University
- \*5 Department of Physics, Kyoto University

As shown in Fig. 1, we successfully obtained a highresolution RGS spectrum, which enabled us to reveal unambiguous Doppler velocities of  $1500 \pm 200 \text{ km s}^{-1}$ (blueward) for the knot and  $650\pm130$  km s<sup>-1</sup> (redward) for the filament. In addition, line broadening at 654 eV (corresponding to O Ly $\alpha$ ) is obtained to be  $< 0.9 \,\mathrm{eV}$ , indicating an oxygen temperature of  $< 30 \,\mathrm{keV}$ . This temperature is significantly lower than that expected (>100 keV) for a (collisionless) forward shock with a speed of ~2000 km s<sup>-1</sup> (= 4/3 times 1500 km s<sup>-1</sup>). We showed that the low oxygen temperature can be reconciled if the ejecta knot was heated by a shock with a velocity of  $\sim 600-1200 \text{ km s}^{-1}$  and was subsequently equilibrated due to Coulomb interactions. Therefore, the ejecta knot was likely heated by a (slower) reverse shock rather than a (faster) forward shock. This result provides significant support for the idea that a reverse shock reheats the SN ejecta, which has been expected for a long time; however observational evidence is still sparse.



Fig. 1. XMM-Newton's RGS spectrum fitted with a nonionization equilibrium model (for diffuse background emission: Katsuda et al. 2013 for details) plus Gaussians (for the ejecta knot and ejecta filament). The best-fit models are shown in green, blue, and red for total, knot, and filament emission, respectively. The lower panel shows the residuals.

References

- 1) P. F. Winkler et al.: IAU Colloq. 101, 65 (1988)
- 2) P. F. Winkler and R. Petre: ApJ 670, 635 (2007)
- 3) A. Burrows et al.: ApJ 655, 416 (2007)
- 4) S. Katsuda et al.: ApJ 678, 297 (2008)
- 5) J. W. den Herder et al.: A&A 365, L7 (2001)

 <sup>&</sup>lt;sup>†</sup> Condensed from the article in The Astrophysical Journal 768, 182 (2013)
<sup>\*1</sup> DIVENN Niching Contra

<sup>\*&</sup>lt;sup>1</sup> RIKEN Nishina Center

<sup>\*2</sup> Department of Physics and Mathematics, Aoyama Gakuin University

<sup>\*&</sup>lt;sup>3</sup> Department of Applied Physics, Faculty of Engineering, University of Miyazaki