Development of intense ²²Na beam for application to wear diagnostics

A.Yoshida, *1 T. Kambara, *1 R. Uemoto, *2 H. Uno, *2 H. Yamaguchi, *3 T. Nakao, *3 D. Kahl, *3 and S. Kubono *3

The industrial cooperation team in RIKEN and SHIEI Ltd. are developing a method for application to the wear diagnostics of industrial materials using RI beams as tracers. RI nuclei are implanted in the near surface of machine parts within a depth of 100 μ m, and the wear-loss of the near surface is evaluated by the decrease in the measured radioactivity. Continuous γ -ray detection from outside the machine enables real-time diagnostics of wear in running machines. For this purpose, we studied intense RI beams of ²²Na ($T_{1/2} = 2.6y$) at the RIPS separator with an energy of 26.6 MeV/u¹), and ⁷Be ($T_{1/2}$ = 53d) at the CRIB separator with an energy of 4.1 MeV/ $u^{2,3}$. From the point of view of beam cost and beam-time flexibility, the low-energy RI beam production at CRIB using the AVF cyclotron independently is favorable. Then, we studied a low energy ²²Na beam production using CRIB.

The ²²Na beam was produced via the $p(^{22}Ne,^{22}Na)n$ reaction. A primary beam of ²²Ne⁷⁺ with an energy of 6.1 MeV/u and intensity of 0.3 pµA was introduced to the cryogenic gas target⁴⁾. The H₂ gas at a pressure of 400 Torr was cooled to 90 K and was circulated to the gas cell at a rate of 17 slm. The primary beam was focused on a Havar foil placed at the entrance of the gas cell with a spot size of diameter 1 mm. The target was stable during this experiment. The produced ²²Na beam was introduced to the F2 focal plane without a degrader foil at F1. Contaminant nuclei of ¹⁹F⁹⁺ (stable) and ²²Ne¹⁰⁺ (primary beam) were then observed (Fig.1). The ²²Na beam had two components with different charge states: q=10+ and 11+. Because the ²²Na¹⁰⁺ component had large ²²Ne¹⁰⁺ contamination, we have investigated the optimum magnetic rigidity for the ²²Na¹¹⁺ beam.

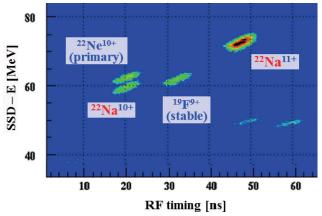


Fig. 1 Contaminant nuclei at optimum magnetic rigidity for the 22 Na¹¹⁺ beam.

*1 RIKEN Nishina Center

The magnetic rigidity of the CRIB separator was scanned in the range of 0.53 – 0.59 Tm (Fig.2). At the optimum condition of 0.5535 Tm, the energy and radius of the ²²Na¹¹⁺ beam were 81.2 MeV (3.7 MeV/u) and $\sigma = 1.6$ mm, respectively, with a momentum slit of ± 3.1% (± 50 mm) at F1. The ²²Na beam was 78 % in purity. The intensity was 3.1×10^7 pps and was obtained by the following γ -ray measurement. To investigate the implantation-depth profile of ²²Na, a stack of 2-µm-thick aluminum foils with 16 mm diameter were irradiated. After irradiation, the stack was disassembled and the intensity of the γ ray (E $\gamma = 1274$ keV) was measured using a Ge detector. From the obtained profile, ²²Na was implanted in aluminum at 38 ± 6 µm with a total approximate activity rate of 0.9 kBq/1h irradiation.

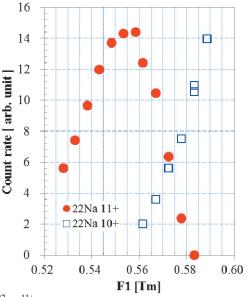


Fig. 2 22 Na¹¹⁺ beam intensity dependence on the magnetic rigidity.

The total activation rate of 22 Na¹¹⁺ beam using RIPS was 5 kBq/1h irradiation¹⁾, which is five times greater than the intensity of CRIB. However, this difference is nearly compensated with the difference in beam production cost between RIPS+RRC and CRIB+AVF.

References

- 1) T. Kambara et al.: AIP Conf. Proc. 1412 (2011) 423-429.
- A. Yoshida, T.Kambara, R.Uemoto et.al.: Nucl. Instrum. Methods, Sect. *B* 317, 785-788(2013).
- 3) A.Yoshida et. al.: RIKEN Accel. Prog. Rep. 46, 252 (2013).
- H. Yamaguchi et al.: Nucl. Instrum. Methods, Sect. A 589, 150–156 (2008).

^{*&}lt;sup>2</sup>S.H.I. Examination and Inspection (SHIEI) Ltd., http://www.shiei.co.jp/

^{*&}lt;sup>3</sup> Center for Nuclear Study (CNS), University of Tokyo.