Development of dual effective gas gain multiplication in CNS Active Target for a high-intensity beam injection

C.S. Lee,^{*1,*2} S. Ota,^{*2} R. Kojima,^{*2} Y.N. Watanabe,^{*3} H. Tokieda,^{*2} and T. Uesaka^{*1}

We are developing a GEM-TPC-based gaseous active target with a pure deuterium gas, called CNS Active Target (CAT),¹⁾ for performing deuteron inelastic scattering experiments. The CAT is operated with a low-pressure (0.2-0.5 atm) deuterium gas for measuring the scattering to the forward angle closer to 0° . A $400-\mu m$ Thick GEM (THGEM) is chosen for the CAT to achieve a gas gain of 10^4 for a low-pressure deuterium gas; its performance was investigated for the first time in our previous work.²⁾. However, when the gain of THGEM is set to such a high level as 10^4 , the amplified charges from the energy loss of the heavyion beam, which is impinged with a high-intensity of 10^{5-6} Hz, become too large for the GEM-TPC to operate stably. The effective gas gain along the beam trajectory (BT) area should be reduced by an order of 10-100, keeping the effective gas gain in the region where the recoiled particles (RP) are measured.

A new type of THGEM, called DGGEM (Dual-Gain THGEM), was manufactured via mechanical drilling and it has a thickness of 400 μ m, a hole diameter of 450 μ m (900 μ m-pitch) on the BT region, and a hole diameter of 300 μ m (700 μ m-pitch) on the RP region ; the DGGEM was used to study the dependence of the gain on the hole diameter. Since the electric field is stronger in a hole with a smaller diameter, a gas gain in the RP region is expected to be lager, by a factor of four, than that in the BT region. Figure 1 shows the obtained gain curves in single, double, and triple DGGEM layer setups as functions of the induction field strength E_{induction} in kV/cm/atm. The measured difference of gas gain between the BT and RP regions was much smaller than expected. Another solution was suggested, in which a grid mesh covered only the area along the beam path with a triple (normal) THGEM configuration. By changing the electric field in the drift field using the grid along the beam path. a partial gain reduction and a more stable operation of CAT is expected. A test experiment was performed with a high-intensity $^{132}_{54}\mathrm{Xe}$ (100 MeV/u) beam at the HIMAC facility. A mesh grid with a 2cm width was set along the beam path (4-mm above the THGEMs). The most suitable voltage setup for the grid was identified using a defocused ¹³²Xe beam. Figure 2 shows the relation between the sampled charges after multiplication and the readout pad ID. The widely hatched area, pad ID 60-340, corresponds to the entire beam trajectory region; and the narrowly hatched area, pad

Fig. 1. Results for each layer structure of DGGEM. For each measurement, the drift field strength was 1 kV/cm/atm and the transfer field strength was 2 kV/cm/atm.

ID 130-270, includes the grid. A significant reduction of gain was achieved only on the grid area. The CAT was stably operated via the optimized grid operation under a high-intensity injection of 132 Xe beam up to 10^5 particles per pulse, in combination with tuning of the protection circuit for the high-voltage supply. Further analysis is in progress.

Fig. 2. An example of correlation between sampled charges after the multiplication and readout pad IDs with a defocused beam injection. Reduced multiplication of charges is achieved under the grid area. The color bar indicates the number of events.

References

- S. Ota et al.: CNS Annual Report 2011 CNS-REP-90 (2013) 70-71.
- C.S. Lee et al.: to be published on CNS Annual Report 2012.

^{*1} RIKEN Nishina Center

^{*2} Center for Nuclear Study (CNS), University of Tokyo

^{*&}lt;sup>3</sup> Department of Physics, University of Tokyo