Spectroscopy of single-particle states in oxygen isotopes via $^{A}O(\vec{p}, pN)$ reaction with polarized protons

S. Kawase,^{*1} T. Uesaka,^{*2} S. Shimoura,^{*1} K. Yako,^{*1} S. Ota,^{*1} S. Michimasa,^{*1} H. Tokieda,^{*1} H. Miya,^{*1*2} T. L. Tang,^{*1} K. Kisamori,^{*1,*2} M. Takaki,^{*1,*2} Y. Kubota,^{*1,*2} C. S. Lee,^{*1,*2} R. Yokoyama,^{*1} T. Fujii,^{*1,*2} M. Kobayashi,^{*1} M. Sasano,^{*2} J. Zenihiro,^{*2} H. Matsubara,^{*2} M. Dozono,^{*2} H. Sakai,^{*2} T. Kubo,^{*2}

K. Yoshida,^{*2} N. Inabe,^{*2} Y. Yanagisawa,^{*2} H. Takeda,^{*2} K. Kusaka,^{*2} N. Fukuda,^{*2} D. Kameda,^{*2} H. Suzuki,^{*2} T. Kawahara,^{*2,*3} T. Wakui,^{*2,*4} S. Sakaguchi,^{*2,*5} T. Noro,^{*2,*5} T. Wakasa,^{*2,*5} J. Yasuda,^{*2,*5} T. Fukunaga,^{*2,*5} Y. Maeda,^{*6} W. Kim,^{*7} S. H. Hwang,^{*7} S. Stepanyan,^{*7} A. Obertelli,^{*8}

A. Galindo-Uribarri,^{*9} E. Padilla-Rodal,^{*10} D. Beaumel^{*2,*11} for the SHARAQ04 collaboration

The (\vec{p}, pN) reaction is an effective spectroscopic tool to examine single-particle states. One can determine the spin-parity of single-particle states in nuclei from the momentum dependence of the cross section and the vector analyzing power without model dependence.¹⁾ In this experiment, our goal was to determine the spin-orbit splitting of the 1p spin doublet in oxygen isotopes as a function of their neutron number.

We performed ${}^{14,22-24}O(\vec{p},2p)$ reaction measurements (SHARAQ04 experiment) with a polarized proton target at RIKEN RIBF to measure singleparticle spectra and to determine spin-orbit splitting in $^{14,22-24}$ O. For the experimental setup, see refs.^{2,3)}

Figure 1 shows the time-of-flight (TOF)- ΔE correlations for (a) incident and (b) residual particles in ¹⁴O runs. The particles are identified via the TOF- ΔE method on an event-by-event basis. For residuals, only their atomic numbers are identified. The proton separation energy (S_p) of the target nuclei can be obtained from the scattering angles and momenta of scattered protons:

$$S_{p} = (1 - \gamma) m_{p} - \gamma (T_{1} + T_{2}) + \beta \gamma (p_{1\parallel} + p_{2\parallel}),$$

where γ and β are the Lorentz factor and the velocity of the beam, respectively; m_p is the proton mass; T_1 and T_2 are the kinetic energies of the scattered protons; and $p_{1\parallel}$ and $p_{2\parallel}$ are the momenta of the scattered protons. In this formula, the momentum of the residual nucleus is ignored because its effect to S_p is negligibly small compared with the resolution of S_p . Figure 2 shows the separation energy spectrum for the ${}^{14}O(p,2p)^xN$ reaction. Some amount of strength can be seen above the separation energy of ${}^{14}O$ (4.627 MeV). However, it is difficult to distinguish excited states in the current result because of the small statistics. We intend to

- *1 Center for Nuclear Study (CNS), University of Tokyo
- *2**RIKEN** Nishina Center
- *3 Department of Physics, Toho University
- *4CYRIC, Tohoku University
- *5 Department of Physics, Kyushu University
- *6 Department of Applied Physics, University of Miyazaki
- *7Department of Physics, Kyungpook National University
- *8 CEA Saclay
- *9 Oak Ridge National Laboratory
- *10Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
- *¹¹ Institut de Physique Nucléaire d'Orsay

continue the analysis of these results by investigating different gating methods that may improve the efficiency, resolution, and S/N ratio.

The analysis for ²²O and ²⁴O beams is still ongoing.

Fig. 1. TOF- ΔE corrections for (a) incident and (b) residual particles in ¹⁴O runs. TOF was measured by using plastic scintillators between (a) F3 and FH9 and (b) target position and S0 downstream.

Fig. 2. Separation energy spectrum for ${}^{14}O(p, 2p)^{x}N$.

References

- 1) G. Jacob, Th. A. J. Maris et al.: Nucl. Phys. A, 257(3), 517 (1976).
- 2) S. Kawase et al.: RIKEN Accel. Prog. Rep. 46 (2013) 30.
- 3) T. L. Tang et al.: RIKEN Accel. Prog. Rep. 46 (2013) 162.