Development of the tracking detector with large GEM foils for the J-PARC E16 experiment

Y. Komatsu*1,*2 for the J-PARC E16 Collaboration

The J-PARC E16¹⁾ experiment is proposed to measure the mass spectrum of the ϕ meson in nuclear In the spectrometer, the momentum of charged particles is measured using the tracking detectors(called "GEM trackers") in a magnetic field. The details of the GEM tracker are described elsewhere $^{2)3}$. The development of the tracker with an effective area of 300 mm × 300 mm is reported in this article. A schematic view of the 300 mm × 300 mm readout board is shown in Fig. 1. Cartesian strips called "X" and "Y" are made of copper and patterned on the top and the bottom of a polyimide sheet of thickness 25 μ m. For charge sharing between X and Y, the base polyimide is etched using the chemical method, except just under the X strips. The glass epoxy of thickness 100 μ m is laid under the Y strips as a support.

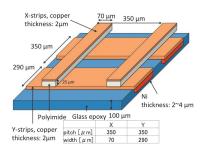


Fig. 1. Schematic view of the 300 mm \times 300 mm readout board. Only a part of the readout board is shown in this magnified view.

The positions of the strips were measured using a coordinate measuring machine (Nikon VMR-10080). The coordinates of the cross-points of the left edge of the X strips and the upper edge of the Y strips $(x_{ij},$ y_{ij})_(i,j=0,...,71) were measured for every 12 strips. The subscripts i and j denote the row and column numbers. The deviations of the coordinates of the crosspoints from the mean values were calculated for each strip and plotted in Fig. 2. The deviations of the X and Y strips are defined as $x_{i,j} - \sum_{i=0}^{71} x_{i,j}/72$ and $y_{i,j} - \sum_{j=0}^{71} y_{i,j}/72$. The maximum deviation of the X and Y strips were 43 μ m and 42 μ m, respectively. The deviations were small compared to the spatial resolution of the X and Y strips, which are $100 \mu m$ and 400 μ m, respectively. The precision of the readout strips was confirmed. GEM foils with an effective area of 300 $mm \times 300 \text{ mm}$ were also fabricated. The average diameters of the holes were 65 μ m for copper and 33 μ m for polyimide in the top and the middle GEM of the stack,

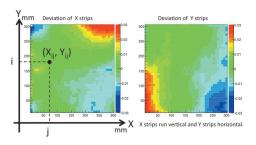


Fig. 2. The measured deviations of the X and Y strips of the 300 mm × 300 mm readout board. The unit of the color bar is mm and the right (up) direction is the positive direction in the left (right) figure.

and 56 μ m and 27 μ m in the bottom for copper and polyimide, respectively. The spatial resolution of the GEM tracker was evaluated using positron beams at the Research Center for Electron Photon Science, Tohoku University. The setup is shown in the left panel of Fig. 3. The GEM tracker was located between two Silicon Strip Detectors (SSDs). The position resolution was evaluated on the basis of the residual of the hit positions calculated from the hits on SSDs and the GEM tracker. The obtained residual distribution for the 0° beam is shown in the right panel of Fig. 3. The residual distribution was fitted with a Gaussian, and the standard deviation was 73 μ m. The requirement of the position resolution is 100 μ m, and the 300 mm × 300 mm GEM tracker has sufficient resolution for the experiment.

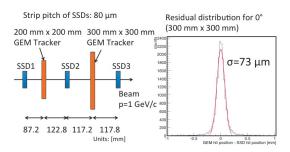


Fig. 3. Setup of the beam test (left) and residual distribution of the 300 mm \times 300 mm GEM tracker for 0° beam(right).

References

- 1) S. Yokkaichi et al.: In this report.
- 2) Y. Komatsu et al.: RIKEN Accel. Rep. 45 (2011).
- 3) Y. Komatsu et al.: RIKEN Accel. Rep. 46 (2012).

^{*1} Department of Physics, University of Tokyo

^{*2} RIKEN Nishina Center