Beta-NMR study of ⁵⁸Cu in Si

M. Mihara,^{*1} Y. Ishibashi,^{*2} Y. Abe,^{*3} Y. Kamisho,^{*1} Y. Morita,^{*1} J. Ohno,^{*1} M. Tanaka,^{*1} S. Shinozaki,^{*1}

R. Kambe,^{*1} M. Fukuda,^{*1} K. Matsuta,^{*1} A. Ozawa,^{*2} D. Nagae,^{*2} S. Inaba,^{*2} S. Okada,^{*2} Y. Saito,^{*2} H. Ueno,^{*3} K. Yamada,^{*3} T. Izumikawa,^{*4} T. Ohtsubo,^{*5} S. Momota,^{*6} D. Nishimura,^{*7} T. Suzuki,^{*8}

T. Yamaguchi,^{*8} Y. Kobayashi,^{*9} K. Imamura,^{*10} X. Yan,^{*3,*11} T. Nagatomo,^{*12} T. Minamisono,^{*1} M. Takechi,^{*13} M. Ogura,^{*1} K. Matsukawa,^{*14} K. Shirai,^{*15} and T. Fujimura^{*15}

Cu impurities in Si devices are considered serious contaminants. The short-lived β emitter ⁵⁸Cu (I^{π} = $1^+, T_{1/2} = 3.2$ s) is attractive for studying the behavior of Cu impurities in Si using the β -NMR technique, which will provide unique information on the mechanism of fast Cu diffusion¹⁾ or the property of Cudopant complex that is related to the gettering technique.²⁾ The N = Z odd-odd nucleus ⁵⁸Cu, consisting of ⁵⁶Ni plus one proton and one neutron, is also interesting in terms of the nuclear moment, from which we can study the proton-neutron interaction in pf-shell nuclei.³⁾

We detected an NMR signal of 58 Cu in Si in 2010, and the magnetic dipole moment $|\mu|^{58}$ Cu]| = (0.46) ± 0.03) $\mu_{\rm N}$ was obtained.⁴⁾ In 2011, Vingerhoets et al. greatly improved the measurement accuracy using collinear laser spectroscopy, achieving μ ^{[58}Cu] = $+(0.570\pm0.002)\mu_{\rm N}$ ⁵⁾ which is about 20% larger than ours. One possibility for the discrepancy is the existence of an electric field gradient (EFG) which could be generated if some defects are formed at a 58 Cu site in Si, though a cubic symmetry site without EFG is expected in terms of the crystal structure of Si. If the EFG exists, the NMR spectrum should split into two lines with frequencies of ν_{\pm} = ν_0 \pm $\nu_{\rm Q}/2$ in the case of I = 1, where ν_0 and ν_Q are the carrier frequency and the quadrupole splitting frequency, respectively. In this case, our previous NMR line may have originated from ν_{-} . In the present study, we have applied the multi-radiofrequency (RF) (β -NQR) technique⁶) to the β -NMR measurement of ⁵⁸Cu in Si to search for a quadrupole splitting in order to verify the above picture and to solve the discrepancy problem.

The experimental method is similar to our previous one.⁴⁾ Spin-polarized ⁵⁸Cu nuclei were produced through the charge exchange reaction of ⁵⁸Ni by im-

- *8 Department of Physics, Saitama University
- *9 The University of Electro-Communications
- *10Meiji University
- *11 Peking University
- *12 IMSS, KEK
- *¹³ GSI
- $^{\ast 14}$ SUMCO, Co.
- *¹⁵ ISIR, Osaka University

pinging a 58 Ni primary beam at 63 MeV/u, provided by the RIKEN ring cyclotron with a typical intensity of 100 particle nA, on a 0.5-mm thick Be target. Fully stripped ${}^{58}Cu^{29+}$ ions were separated by the RIKEN projectile fragment separator (RIPS) and were implanted into a single crystal sample of B-doped Si at 15 K with the crystal $\langle 001 \rangle$ orientation set parallel to the external magnetic field $B_0 = 0.93$ T, the same condition as in the previous experiment. A pair of resonance frequencies ν_{\pm} was searched for by changing both ν_0 and $\nu_{\rm Q}$, using the β -NQR technique in which two frequencies were applied in series as $\nu_- \rightarrow \nu_+ \rightarrow \nu_$ during the RF duration to inverse spin polarization of 58 Cu.

The resonance was found at $\nu_0 \sim 4.1$ MHz and ν_0 ~ 2.6 MHz. The ν_Q spectrum at $\nu_0 = 4.00 - 4.15$ MHz is shown in Fig. 1, from which $\nu_{\rm Q} = 4eqQ/3h(3\cos^2\theta - 1)$ $= (2.6 \pm 0.4)$ MHz was obtained. The EFG q will be obtained using the known Q moment of ${}^{58}Cu^{5)}$ after determining the angle θ between the main axis of the EFG and B_0 from the crystal orientation dependence of $\nu_{\rm Q}$. $|\mu|^{58} {\rm Cu}|| = (0.58 \pm 0.01) \mu_{\rm N}$ was obtained from ν_0 , which is in agreement with the data reported by Vingerhoets et al.⁵⁾ The difference between the present μ ^{[58}Cu] and the previous one⁴) is mostly explained by the quadrupole splitting.

Fig. 1. Beta-NQR spectrum of ⁵⁸Cu in Si.

References

- 1) A.A. Istratov and E.R. Weber: J. Electrochemical Soc. **149**, G21 (2002).
- 2) S.M. Myers et al.: J. Appl. Phys. 88, 3795 (2000).
- 3) M. Honma et al.: Phys. Rev. C 69, 034335 (2004).
- 4) M. Mihara, et al.: Hyperfine Interact. 197, 143 (2010).
- 5) P. Vingerhoets et al.: Phys. Lett. B 703, 34 (2011).
- 6) M. Mihara et al.: Hyperfine Interact. 136/137, 339 (2001).

^{*1} Department of Physics, Osaka University

^{*2} Department of Physics, University of Tsukuba

^{*3} **RIKEN** Nishina Center

^{*4} Radioisotope Center, Niigata University

^{*5} Department of Physics, Niigata University

^{*6} Kochi University of Technology

^{*7} Department of Physics, Tokyo University of Science