Measurement of alpha elastic scattering on ¹⁵O

A. Kim,^{*1} K. Y. Chae,^{*1} M. S. Gwak,^{*1} S. M. Cha,^{*1} S. H. Choi,^{*2} Y. H. Kim,^{*2} H. W. Chae,^{*2} K. I. Hahn,^{*3} D. H. Kim,^{*3} G. W. Kim,^{*3} S. Y. Han,^{*3} P. S. Lee,^{*4} J. Y. Moon,^{*5} H. Yamaguchi,^{*6} D. Kahl,^{*6} and T. Nakao^{*6}

The measurement of alpha elastic scattering on $^{15}\mathrm{O}$ for studying the resonance states of ¹⁹Ne was performed by using the CRIB (CNS Radioactive Ion Beam separator) at the Center for Nuclear Study, University of Tokyo. Alpha-cluster structures have been an interesting subjects of study. Several investigations of alpha-cluster structures have been conducted on 4N nuclei such as ${}^{8}\text{Be}$, ${}^{12}\text{C}$, ${}^{16}\text{O}$, and ${}^{20}\text{Ne}$. ${}^{1-3)}$ In the case of ¹⁹Ne, because the system of nuclei can be regarded as ²⁰Ne plus one hole, weakly coupled states of the alpha and hole have been studied theoretically in the low-excitation energy region, but limited experimental data are available, till date. Therefore, experimental study of alpha elastic scattering on ¹⁵O is very crucial for understanding how alpha clustering is manifested in proton-rich nuclei. Unknown alpha-cluster states of ¹⁹Ne from 1^- and 3^- members (K^{π} = 0^- cluster band of ²⁰Ne) as well as 4^+ and 6^+ members (K^{π} = 0^+ cluster band of ²⁰Ne) can be identified by performing alpha elastic scattering on ¹⁵O. Because the study of alpha cluster states of ¹⁹Ne has been carried out theoretically, this experimental result can be used to confirm the alpha-cluster structure of Z>N nuclei of Ne isotopes. $^{4,5)}$

Moreover, astrophysically, the ${}^{18}\text{F}(p,\alpha){}^{15}\text{O}$ reaction is very important because the amount of ${}^{18}\text{F}$ produced in a nova depends sensitively on the reaction rates of ${}^{18}\text{F}(p,\alpha){}^{15}\text{O}$ and ${}^{18}\text{F}(p,\gamma){}^{19}\text{Ne.}{}^{6)}$ To date, experimental studies using ${}^{18}\text{F}$ beams as well as theoretical works have been reported competitively. However, resonance parameters of relevant states above the proton threshold at $E_x = 6.411$ MeV have not been confirmed and remain controversial.⁷⁻⁹ Therefore, if the resonance properties of ${}^{19}\text{Ne}$ using ${}^{15}\text{O}(\alpha, p){}^{18}\text{F}$ are studied, which is a time reverse reaction of ${}^{18}\text{F}(p,\alpha){}^{15}\text{O}$, we can expect better results because the ${}^{15}\text{O} + \alpha$ threshold energy is only 3.53 MeV(E_x of ${}^{19}\text{Ne}$).

In this study, the ¹⁵O(α, α)¹⁵O reaction was measured in the energy range $E_{c.m.} = 1.5 - 7.1$ MeV, which corresponds to $E_x = 5.0 - 10.6$ MeV of ¹⁹Ne. The primary beam, ¹⁵N (7.0 MeV/u, 0.6 pµA), was transported from the AVF cyclotron and impinged on a hydrogen gas target with a thickness of 1.09 mg/cm². The secondary beam, ¹⁵O, was obtained by the $p(^{15}N,n)^{15}O$ reaction. Fig. 1 shows beam identification for ¹⁵O and other contaminations on the F2

Fig. 1. Secondary beam identification on the F2 focal plane.

focal plane. The main contamination of the secondary beam was $^{15}\mathrm{N}$, the primary beam. $^{15}\mathrm{O}$ beams of 6×10^5 counts/s were collected at the F3 chamber which contains He gas and a Si telescope and the beams were 96 % pure after passing through a Wien filter. The energy of the $^{15}\mathrm{O}$ beam was 34 MeV after the entrance window (Mylar 25 $\mu\mathrm{m}\text{-thick}$) of the F3 chamber.

For inducing alpha elastic scattering, we filled He gas directly in the F3 chamber without a special gas cell. We installed the one-set telescope of consisting two Si layers (20 μ m-thick and 480 μ m-thick, respectively) at zero degrees; it was located at a distance of 200 mm from the entrance window of the chamber and the pressure of ⁴He gas was 760 Torr at room temperature, which is equivalent to that for an effective thickness of 3.33 mg/cm². The data are currently being analyzed.

References

- 1) K. Ikeda et al.: Prog. Theor. Phys. Suppl. 68, 1 (1986)
- H. Horiuch et al.: Suppl. Prog. Theor. Phys. 192, 1 (2012)
- 3) M. Freer : Rep. Prog. Phys. 70, 2149 (2007)
- F. Nemoto and H. Bando: Prog. Theor. Phys. 47, 1210(1972)
- T. Sakuda and F. Nemoto: Prog. Theor. Phys. 62, 1274 (1979)
- 6) M. Hernanz et al.: Astrophys. J. 526, L97 (1999)
- 7) D. W. Bardayan et al.: Phys. Rev. C 70, 015804 (2004)
- 8) H. Fortune et al.: Phys. Rev. C 73, 024302 (2006)
- 9) A. St. J. Murphy et al.: Phys. Rev. C 79, 058801 (2009)

^{*1} Department of Physics, Sung-Kyun-Kwan University

^{*&}lt;sup>2</sup> Department of Physics, Seoul National University

^{*&}lt;sup>3</sup> Department of Physics, Ewha Womans University

^{*4} Department of Physics, Chung-Ang University

^{*&}lt;sup>5</sup> RISP, Institute for Basic Science

^{*6} Center for Nuclear Science, University of Tokyo