Magnetic instability induced by Rh doping in the Kondo semiconductor CeRu₂Al₁₀

H. Guo, *1, *2 H. Tanida, *1, *3 R. Kobayashi, *4, *5 I. Kawasaki, *1 M. Sera, *3 T. Nishioka, *6 M. Matsumura, *6 I. Watanabe, *1 and Z. Xu^{*2}

The ternary compound CeT_2Al_{10} (T = Fe, Ru, and Os) is a unique system that shows Kondo semiconducting behavior at low temperatures, and it exhibits an antiferromagnetically (AFM) ordered state at $T_0 \sim 30$ K for T = Ru and Os, while a nonmagnetic ground state is observed for T = Fe, as is usually the case for Kondo semiconductors (or insulators).¹⁻³ Since the magnetic susceptibility (χ) systematically decreases on changing the transition metal element in the order from T = Ru to Os to Fe, the 4f electron state is located in the vicinity of the boundary between localized and non-localized states, as expected from the Kondo semiconducting behavior. Thus, the c-f hybridization between d- and 4f-electrons must play a key role for their low-temperature properties involved in the origin of the AFM order.

The AFM order is very unusual. T_0 is quite high for a usual Ce-based intermetallic compound when taking into account, for instance, the long distance of 5.2 Å between neighboring Ce ions.²⁾ The magnetic anisotropy is also unusual. Although the easy axis is the a axis with the large magnetic anisotropy $(a \gg c \gg b)$, the AFM ordered moment $(m_{\rm AF})$ with a magnitude of 0.3–0.4 $\mu_{\rm B}$ /Ce aligns in the *c*-axis direction.^{4,6)} Recently, the Rh-doping effect on $CeRu_2Al_{10}$ has been examined, where Rh $(4d^8)$ has one electron more than Ru $(4d^7)$.^{7,8)} On the basis of the results, we infer that χ becomes more Curie–Weiss like and decreases drastically below T_0 for $H \parallel a$. These results imply that the Rh-doping breaks $m_{\rm AF} \| c$ and $m_{\rm AF} \| a$ is realized instead. In order to clarify the spin alignment and the critical Rh concentration x_c from a microscopic point of view, we performed zero-field μ SR on $Ce(Ru_{1-x}Rh_x)_2Al_{10}$ (x = 0, 0.03, 0.05, and 0.1).

Figure 1 shows the temperature dependence of the internal magnetic field $(H_{\text{small}}, H_{\text{large}})$ at the muon site for Ce(Ru_{1-x}Rh_x)₂Al₁₀. Here, H_{small} (H_{large}) represents the smaller (larger) component of internal magnetic fields. For the undoped sample, H_{small} shows non-mean-field-like behavior, while H_{large} increases below T_0 and saturates to a value of about 180 G below

- *³ AdSM, Hiroshima University
- ^{*4} Neutron Science Laboratory, ISSP, Tokyo University
- *5 Quantum Condensed Matter Division, Oak Ridge National Laboratory
- *6 Graduate school of Integrated Arts and Science, Kochi University

Fig. 1. Temperature dependence of the internal magnetic fields at the muon sites in $Ce(Ru_{1-x}Rh_x)_2Al_{10}$ (x = 0, 0.03, 0.05, and 0.1): (a) H_{small} (b) H_{large} .

about 15 K. On the other hand, for Rh-doped samples, H_{large} reaches about 800 G at low temperatures. This strongly suggests the spin-flop transition from $m_{\rm AF} \| c$ to $m_{\rm AF} \| a$ on the basis of our dipolar field calculation at the suggested muon site, which is consistent with the bulk properties.^{7,8}) Since there is no Rh-concentration dependence in H_{large} for x > 0.03, the boundary of the different magnetic ground states is identified at around $x \sim 0.03$. The drastic change of the magnetic ground state by such a tiny Rh doping indicates that the magnetic structure in $CeRu_2Al_{10}$ is not robust and can be quite easily tuned using external perturbations such as *d*-electron doping. On the basis of previous experimental results from thermal electric power,⁹⁾ neutron scattering,⁴⁾ and NQR measurements,¹⁰⁾ the nonmean-field-like behavior of H_{small} for the x = 0 sample is attributed to the Fermi contact field from the polarized electrons at the muon site, while the T dependence of H_{large} for the Rh-doped samples is still an unresolved question; whether it results from the Fermi contact field or from the unusual ordering of Ce^{3+} moments should be clarified by future neutron scattering experiments.

References

- 1) A. M. Strydom: Physica B 404, 2981 (2009).
- 2) T. Nishioka et al.: J. Phys. Soc. Jpn. 78, 123705 (2009).
- 3) Y. Muro et al.: J. Phys. Soc. Jpn. 78, 083707 (2009).
- 4) D. D. Khalyavin et al.: Phys. Rev. B 82, 100405(R)
- (2010).5) K. Kato *et al.*: J. Phys. Soc. Jpn. **80**, 073701 (2011).
- 6) H. Tanida *et al.*: Phys. Rev. B **84**, 233202 (2011).
- 7) A. Kondo *et al.*: J. Phys. Soc. Jpn. **82**, 054709 (2013).
- R. Kobayashi *et al.*: J. Phys. Soc. Jpn. **82**, 093702 (2013).
- 9) H. Tanida et al.: J. Phys. Soc. Jpn. 79, 063709 (2010).
- M. Matsumura *et al.*: J. Phys. Soc. Jpn. **78** 123713 (2009).

[†] Condensed from the article in Phys. Rev. B **88**, 115206 (2013).

^{*1} RIKEN Nishina Center

^{*2} Department of Physics and State Key Laboratory of Silicon Materials, Zhejian University