Na dynamics in the quasi-one-dimensional ionic conductor NaM_2O_4 (M=Ti and V)

I. Umegaki,^{*1} Y. Higuchi,^{*1} M. Månsson,^{*2} H. Sakurai,^{*3} I. Kawasaki,^{*4} I. Watanabe,^{*4} and J. Sugiyama^{*1}

Fig. 1. Crystal structure of NaM_2O_4 .

In the Na M_2O_4 lattice with a CaFe₂O₄-type orthorhombic structure, the Na⁺ ions are located at the center of a one-dimensional (1D) tunnel along the *b*axis, which is formed by 1D double chains consisting of edge-sharing MO_6 octahedra (M: transition metal) (see Fig. 1). The physical properties of Na M_2O_4 are reported to strongly depend on M. In particular, it is very important to clarify their Na⁺-ion conductivity ($\sigma_{\rm Na}$) and/or Na⁺-ion diffusion coefficient ($D_{\rm Na}$) when using Na M_2O_4 as a solid electrolyte in an allsolid-state Na-ion battery.

Following the preliminary report on NaV₂O₄¹⁾, we explain here in the results of μ^+ SR measurements on Na M_2 O₄ (M=Ti and V). The former is a semiconductor with a small band gap²⁾, while the latter is a half metal with anisotropic electric conductivity³⁾. Both ZF- and LF- μ^+ SR spectra were measured in the temperature (T) range between 145 and 500 K. The obtained spectra were fitted by a combination of an exponentially relaxing dynamic Kubo-Toyabe signal from a sample and a non-relaxing background signal from a titanium sample holder.

Figure 2 shows the *T* dependences of field fluctuation rate (ν), field distribution width (Δ), and exponential relaxation rate (λ) for (a) NaTi₂O₄ and (b) NaV₂O₄. For NaTi₂O₄, as *T* increases from 150 K, Δ slowly decreases, while ν increases rapidly particularly above 350 K. This indicates that the local nuclear magnetic

Fig. 2. *T*-dependences of field fluctuation rate (ν) , field distribution width (Δ) , and exponential relaxation rate (λ) for (a) NaTi₂O₄ and (b) NaV₂O₄.

field experienced by μ^+ starts to fluctuate because of Na⁺ diffusion. For NaV₂O₄, on the other hand, even at 150 K ν is comparable to that for NaTi₂O₄ at 450 K. This indicates that Na⁺ ions diffuse even at 150 K in NaV₂O₄. The anomaly around 450 K in the $\nu(T)$ curve is probably caused by a structural phase transition.

If we assume a thermal activation process for the T dependence of ν , the activation energy (E_a) is estimated to be 350 meV for NaTi₂O₄ and 48 meV for NaV₂O₄. Since the simple Nernst-Einstein equation states that $\sigma_{\rm Na} \propto D_{\rm Na}$, where $D \propto \nu$, NaV₂O₄ is expected to be a good candidate for a Na⁺-ionic conductor.

References

- J. Sugiyama et al.: RIKEN Accel. Prog. Rep. 45, 197 (2012).
- M. J. Geselbracht et al.: J. Solid State Chem. 179, 3489 (2006).
- 3) K. Yamaura et al.: Phys. Rev. Lett. 99, 196601 (2007).

^{*1} Toyota Central Research and Development Labs., Inc.

^{*&}lt;sup>2</sup> École polytechnique fédérale de Lausanne and Paul Scherrer Institut

^{*&}lt;sup>3</sup> National Institute for Materials Science (NIMS)

^{*4} RIKEN Nishina Center