Study of unbound oxygen isotopes 25O and 26O using SAMURAI

Y. Kondo,*1,+1,2 T. Nakamura,*1,+1,2 N. L. Achouri,*1,+1,2 T. Aumann,*4 H. Baba,*2 F. Delaunay,*3 P. Doornenbal,*2 N. Fukuda,*2 J. Gibelin,*3 J. W. Hwang,*5 N. Inabe,*2 T. Isobe,*2 D. Kameda,*2 D. Kanno,*1,+1,2 S. Kim,*5 N. Kobayashi,*1,+1,2 T. Kobayashi,*6,+2 T. Kubo,*2 S. Leblond,†3 J. Lee,*2 F. M. Marqués,*3 R. Minakata,*1,+1,2 T. Motobayashi,*1,+1,2 D. Murat,*7 T. Murakami,*8 K. Muto,*6 N. Nakatsuka,*8 T. Nakashima,*1,+1,2 A. Navin,*9 S. Nishi,*1,+1,2 S. Ogoshi,*1,+1,2 N. A. Orr,*4 H. Otsu,*2 H. Sato,*2 Y. Satou,*5 Y. Shimizu,*2 H. Suzuki,*2 K. Takahashi,*9 H. Takeda,*2 S. Takeuchi,*2 R. Tanaka,*1,+1,2 Y. Togano,*10,+13 A. G. Tuff,*11 M. Vandenbroucke,*12 and K. Yoneda*2

Unbound states of the neutron-rich oxygen isotopes 25O and 26O have been studied by the invariant-mass method by using SAMURAI1) with the aim to elucidate the mechanism of the neutron drip line anomaly in oxygen and fluorine isotopes. Another interesting topic is the possible two-neutron radioactivity of the 26O ground state, predicted by a theoretical study.2) Experimentally, only the upper limit of the ground-state energy3,4) and lifetime with a large error5) are currently available.

Details of the experimental setup are described in our previous report.6) Figure 1 shows a mass identification plot of outgoing $Z = 8$ charged particles observed in the breakup of 27F on a carbon target. Particle identification is performed by the $B\rho - \Delta E$-TOF technique. The magnetic rigidity $B\rho$ is determined by the positions and angles at the entrance and exit of the SAMURAI magnet measured by means of the MWDCs (BDC1.2 and FDC1.2). Combining the $B\rho$ value with energy loss ΔE and TOF measured by a plastic scintillator hodoscope (HODF), outgoing particles can be clearly identified. The mass resolution $\Delta A = 0.18$ (FWHM), corresponding to 13σ separation, is achieved for 24O.

Figure 2 shows a preliminary decay energy spectrum of 24O+n observed in the breakup of 27F. The sharp peak near the neutron decay threshold corresponds to the 26O ground state and the peak at approximately 0.8 MeV corresponds to the ground-state resonance of 25O. Since the obtained statistics is much larger than that obtained in the previous experiments3,4) a better constraint on the 26O ground-state energy can be obtained. Analysis is currently in progress.

![Fig. 1. Mass spectrum of outgoing $Z = 8$ particles in the breakup of 27F.](image1)

![Fig. 2. Decay energy spectrum of 24O+n in the breakup of 27F.](image2)

References