Excitation functions for production of Nb and Ta isotopes in the (d,x) reactions on ^{*nat*}Zr and ^{*nat*}Hf up to 24 MeV

M. Murakami,^{*1,*2} H. Haba,^{*1} S. Goto,^{*2} and H. Kudo^{*2}

The isotopes $^{95g}\mathrm{Nb}~(T_{1/2}$ = 34.991 d) and $^{179}\mathrm{Ta}$ $(T_{1/2} = 1.82 \text{ y})$ are useful radiotracers for the basic studies of the element 105, Db. We have investigated the production of these radiotracers by the activation of ^{nat}Zr and ^{nat}Hf with a 14-MeV proton beam supplied by the RIKEN AVF cyclotron.¹⁾ From the AVF cyclotron, a deuteron beam is also available.^{2,3)} Activation by the deuteron beam is one of the widely used and well-studied methods to produce the radiotracers. However, the production cross sections of 95g Nb by the (d,x) reaction are scanty compared to those of the (p,x)reactions. Furthermore, the cross sections of 179 Ta in the (d,x) reaction have not been reported. In this work, we measured the excitation functions for the production of 95g Nb and 179 Ta as well as other isotopes in the (d,x) reactions on ^{*nat*}Zr and ^{*nat*}Hf.

The excitation functions were measured with a stacked-foil technique. For the measurement of the cross sections of Nb isotopes, thin foils of nat Zr (20 μ m thickness), ^{*nat*}Ti (20 μ m thickness), and ^{*nat*}Ta (20 μm and 10 μm thickness) were stacked alternately and used as a target. The ^{nat}Ti foils were used to determine the beam energy and intensity by measuring the excitation function of the $^{nat}\text{Ti}(d,x)^{48}\text{V}$ reaction, and the ^{nat}Ta foils were also used as the energy degrader. For measurement of the cross sections of Ta isotopes, thin foils of nat Hf (25 μ m thickness) and nat Ti (20 μ m thickness) were stacked alternately. The size of all the foils was $15 \times 15 \text{ mm}^2$. Both stacks were irradiated by the 24-MeV deuteron beam supplied by the AVF cyclotron for 30 min. The beam was collimated to a diameter of 9 mm, and the average beam currents were 0.48 μ A and 046 μ A for the Zr/Ti/Ta and Hf/Ti stacks, respectively. After irradiation and proper cooling, γ - and X-rays of each foil were measured by the Ge detectors.

The production cross sections were derived by the well-known activation formula.⁴⁾ The beam energies in the individual target foils were calculated with the SRIM-2008 program.⁵⁾ The experimental data were compared with the cross section data culculated by the TALYS-1.4 code.⁶⁾

The cross sections of 90g,91m,92m,95m,95g,96 Nb, 95,97 Zr, and 87m,87g,88 Y were measured in the nat Zr(d,x) reactions, whereas the production cross sections of 175,176,178,179,180g Ta and 175,179m2,180m,181 Hf were measured in the nat Hf(d,x) reactions. Figure 1(a) shows the excitation function of the nat Zr(d,x) ${}^{95m+g}$ Nb reaction. In Fig. 1(a), the cross

sections reported by Gonchar et al.⁷⁾, those reported by Tárkányi et al.,⁸⁾ and those calculated by the TALYS code⁶⁾ are compared. The data reported by Gonchar et al.⁷⁾ and Tárkányi et al.⁸⁾ show a similar shape of the excitation function with a systematically higher magnitude. The TALYS code also indicates a similar shape of the excitation function but lower values than the measured ones. The cross sections of the $^{nat}Hf(d,x)^{179}$ Ta reaction were measured for the first time, as shown in Fig. 1(b). The measured excitation function exhibits the maximum cross section of 489 ± 50 mb at 21.1 ± 0.4 MeV. Again, the calculated cross sections by TALYS indicate lower values, though the shape of the excitation function is similar.

Thick-target yields of 95m,g Nb and 179 Ta were deduced from the measured cross sections and the stopping power given by the SRIM-2008 program.⁵⁾ The deduced yields for beam energies up to 24 MeV were 1.3, 0.40, and 0.21 MBq/(μ A·h) for 95m Nb, 95g Nb, and 179 Ta, respectively.

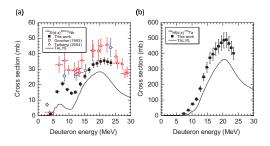


Fig. 1. Excitation functions of (a) ${}^{nat}\text{Zr}(d,x)^{95m+g}\text{Nb}$ reaction and (b) ${}^{nat}\text{Hf}(d,x)^{179}\text{Ta reaction}$.

References

- M. Murakami et al.: RIKEN Accel. Prog. Rep. 46, 247 (2013).
- M. U. Khandaker et al.: Nucl. Instrum. Methods Phys. Res. B 296, 14 (2013).
- M. U. Khandaker et al.: Nucl. Instrum. Methods Phys. Res. B 316, 33 (2013).
- 4) M. S. Uddin et al.: Nucl. Instrum. Methods Phys. Res. B 258, 313 (2007).
- J. F. Ziegler et al.: Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 6) A. J. Koning et al.: in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by O. Bersillon et al. (EDP Sciences, 2008), p. 211.
- A. V. Gonchar et al.: Atomnaya Énergiya 75, 205 (1993).
- 8) F. Tárkányi et al.: Nucl. Instrum. Methods Phys. Res. B 217, 373 (2004).

^{*1} RIKEN Nishina Center

^{*&}lt;sup>2</sup> Department of Chemistry, Niigata University