Structure of 18B

S. Leblond,1,1 S. Ogoshi,1,2 R. Minakata,2 J. Gibelin,1,4 F. M. Marqués,4 N. A. Orr,1,1 Y. Kondo,2 T. Nakamura,2 R. Tanaka,2 N. L. Achouri,1 T. Aumann,1 H. Baba,1 F. Debaunay,1 P. Doornenbal,4 N. Fukuda,4 J. W. Hwang,4 N. Inabe,4 D. Kameda,4 D. Kanno,2 S. Kim,5 N. Kobayashi,2,3 T. Kobayashi,6,6 T. Kubo,4 J. Lee,4 T. Motobayashi,4 D. Murai,7 T. Murakami,8 K. Muto,9,10 T. Nakashima,11 N. Nakatsuka,12 A. Navin,5,5 S. Nishi,5,5 H. Otsu,5,5 H. Sato,4,5 Y. Shimizu,4 H. Suzuki,4 K. Takahashi,6,6 H. Takeda,4 S. Takeuchi,4 Y. Togano,10 A. G. Tuff,11 M. Vandenbruck,12 K. Yoneda12

The investigation of the light neutron-rich dripline nuclei, including in particular those exhibiting halos, is a central theme of nuclear structure physics. In the present work a series of measurements, aimed at elucidating the structure of the two heaviest candidate two-neutron halo systems, 19B and 22C,$^{1-3}$ and the associated unbound sub-systems 18B and 21C, the level schemes of which are critical to the defining the 17B+n and 20C+n interactions for three-body models, have been undertaken. In addition to being of direct importance to halo physics, 18,19B and 21,22C are of considerable interest in terms of the evolution of shell-structure far from stability as they span the N=14 and 16 sub-shell closures below doubly-magic 22,24O.

The measurements were accomplished using the SAMURAI spectrometer4 coupled to the large area neutron array NEBULA5 and were performed as part of the first phase of SAMURAI experiments. The analysis to date has concentrated on the fragment+neutron channels and, in particular, 17B+n which is known to exhibit a strongly interacting virtual s-wave threshold state6. Beyond the intrinsic physics interest noted above, a well defined threshold state provides an ideal means to validate the calibration and analysis procedures.

In addition to populating 18B via proton removal from 19C (which should populate almost exclusively s-wave strength), the complementary probe of neutron removal from a 19B beam has been investigated. Figure 1 shows the reconstructed 17B+n invariant mass (or relative energy) spectra for the two reactions. As may be clearly seen the proton removal populates a very narrow threshold structure, the form of which is consistent with the s-wave virtual state deduced by Spyrou et al.6). The neutron removal, however, in addition to the threshold peak shows clear evidence for the population of a state or states in the region of 0.5–1 MeV.

The further analysis of these preliminary results is currently underway as are the data sets for the analogue reactions populating 21C.

The research described here forms part of the thesis work of S. Leblond who acknowledges the support provided in terms of a 6 month RIKEN Nishina Center IPA fellowship in 2013.

References