## Structure of <sup>18</sup>B

S. Leblond,<sup>\*1</sup> S. Ogoshi,<sup>\*2</sup> R. Minakata,<sup>\*2</sup> J. Gibelin,<sup>\*1</sup> F. M. Marqués,<sup>\*1</sup> N. A. Orr,<sup>\*1</sup> Y. Kondo,<sup>\*2</sup>

T. Nakamura,<sup>\*2</sup> R. Tanaka,<sup>\*2</sup> N. L. Achouri,<sup>\*1</sup> T. Aumann,<sup>\*3</sup> H. Baba,<sup>\*4</sup> F. Delaunay,<sup>\*1</sup> P. Doornenbal,<sup>\*4</sup>

N. Fukuda,<sup>\*4</sup> J. W. Hwang,<sup>\*5</sup> N. Inabe,<sup>\*4</sup> T. Isobe,<sup>\*4</sup> D. Kameda,<sup>\*4</sup> D. Kanno,<sup>\*2</sup> S. Kim,<sup>\*5</sup> N. Kobayashi,<sup>\*2</sup> T. Kobayashi,<sup>\*6</sup> T. Kubo,<sup>\*4</sup> J. Lee,<sup>\*4</sup> T. Motobayashi,<sup>\*4</sup> D. Murai,<sup>\*7</sup> T. Murakami,<sup>\*8</sup> K. Muto,<sup>\*6</sup> T. Nakashima,<sup>\*2</sup> N. Nakatsuka,<sup>\*8</sup> A. Navin,<sup>\*9</sup> S. Nishi,<sup>\*2</sup> H. Otsu,<sup>\*4</sup> H. Sato,<sup>\*4</sup> Y. Satou,<sup>\*5</sup> Y. Shimizu,<sup>\*4</sup>

H. Suzuki,<sup>\*4</sup> K. Takahashi,<sup>\*6</sup> H. Takeda,<sup>\*4</sup> S. Takeuchi,<sup>\*4</sup> Y. Togano,<sup>\*10</sup> A. G. Tuff,<sup>\*11</sup> M. Vandebrouck,<sup>\*12</sup>

K. Yoneda<sup>\*4</sup>

The investigation of the light neutron-rich dripline nuclei, including in particular those exhibiting halos, is a central theme of nuclear structure physics. In the present work a series of measurements, aimed at elucidating the structure of the two heaviest candidate two-neutron halo systems,  ${}^{19}B$  and  ${}^{22}C^{1-3)}$ , and the associated unbound sub-systems <sup>18</sup>B and <sup>21</sup>C, the level schemes of which are critical to the defining the <sup>17</sup>Bn and <sup>20</sup>C-n interactions for three-body models, have been undertaken. In addition to being of direct importance to halo physics, <sup>18,19</sup>B and <sup>21,22</sup>C are of considerable interest in terms of the evolution of shell-structure far from stability as they span the N=14 and 16 subshell closures below doubly-magic  $^{22,24}$ O.

The measurements were accomplished using the SAMURAI spectrometer<sup>4</sup>) coupled to the large area neutron array NEBULA<sup>5</sup>) and were performed as part of the first phase of SAMURAI experiments. The analvsis to date has concentrated on the fragment+neutron channels and, in particular,  ${}^{17}\mathrm{B}+n$  which is known to exhibit a strongly interacting virtual s-wave threshold state<sup>6)</sup>. Beyond the intrinsic physics interest noted above, a well defined threshold state provides an ideal means to validate the calibration and analysis procedures.

In addition to populating <sup>18</sup>B via proton removal from  ${}^{19}C$  (which should populate almost exclusively swave strength), the complementary probe of neutron removal from a <sup>19</sup>B beam has been investigated. Figure 1 shows the reconstructed  ${}^{17}\text{B}+n$  invariant mass (or relative energy) spectra for the two reactions. As may be clearly seen the proton removal populates a very narrow threshold structure, the form of which is consistent with the s-wave virtual state deduced by

- \*1LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3
- \*2 Department of Physics, Tokyo Institute of Technology
- \*3 Institut für Kernphysik, Technische Universität Darmstadt
- \*4 **RIKEN** Nishina Center
- \*5Department of Physics and Astronomy, Seoul National Universitv
- \*6 Department of Physics, Tohoku University
- \*7Department of Physics, Rikkyo University
- \*8 Department of Physics, Kyoto University
- \*9 GANIL, CEA/DSM-CNRS/IN2P3
- \*10ExtreMe Matter Institute (EMMI) and Research Division, GSI
- \*11 Department of Physics, University of York
- \*12Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, Orsay



Fig. 1. Preliminary results for the  ${}^{17}B+n$  relative energy spectra obtained for proton and neutron removal reactions at 240 MeV/nucleon.

Spyrou *et al.* $^{6)}$ . The neutron removal, however, in addition to the threshold peak shows clear evidence for the population of a state or states in the region of 0.5–  $1 \, \mathrm{MeV}.$ 

The further analysis of these preliminary results is currently underway as are the data sets for the analogue reactions populating  $^{21}$ C.

The research described here forms part of the thesis work of S. Leblond who acknowledges the support provided in terms of a 6 month RIKEN Nishina Center IPA fellowship in 2013.

## References

- 1) K. Tanaka et al.: Phys. Rev. Lett. 104, 062701 (2010).
- 2) N. Kobayashi et al.: Phys. Rev. C83, 054604 (2012).
- 3) L. Gaudefroy et al.: Phys. Rev. Lett. 109, 20503 (2012).
- 4) T. Kobayashi et al.: Nucl. Instr. Meth. B 317, 294 (2013).
- Y. Kondo et al.: RIKEN Accel. Prog. Rep. 45, 131 (2012); http://be.nucl.ap.titech.ac.jp/~nebula
- 6) A. Spyrou et al.: Phys. Lett. B 683, 129 (2010).