Energy dependence of π^- differential cross section in ²⁸Si + In with beam energies of 400, 600, and 800

M. Sako,^{*1*2} T. Murakami,^{*2} Y. Ichikawa,^{*2} K. Ieki,^{*4} Y. Ikeda,^{*4} S. Imajo,^{*2} T. Isobe,^{*1} S. Ebesu,^{*2} M. Matsushita,^{*6} J. Murata,^{*4} Y. Nakai,^{*1} S. Nishimura,^{*1} M. Nitta,^{*4} H. Sakurai,^{*1*6} R. Sameshima,^{*2} E. Takada,^{*3} and K. Yoshinaga^{*5}

Information on the nuclear equation of state (EoS) within a broad density range is important for understanding the physics of neutron stars. However, the isospin-dependent term in EoS, i.e., the density dependence of the symmetry energy $E_{sym}(\rho)$ has a large model dependence in the supra-normal density region $(\rho > \rho_0)$, the saturation density $\rho_0 \cong 0.16 f m^{-3})$. As a result, the relationship between the radius and the mass of a neutron star cannot be reliably calculated. According to a transport model calculation (IBUU04),¹ detailed studies of the pion yield ratio, $Y(\pi^-)/Y(\pi^+)$, in central nucleus-nucleus collisions at intermediate energies can be conducted to obtain significant constraints on $E_{sym}(\rho)$ in the supra-normal density region.

The IBUU04 predicts that the beam energy dependence of the pion yield ratio is strongly related to the behavior of $E_{sym}(\rho)$ in the supra-normal density region.¹⁾ We performed a series of experiments using 400, 600, and 800 MeV/nucleon ²⁸Si beams accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) and an In target with a compact centrality filter and a pion range counter(RC)²⁾.

The $\pi^+ \to \mu^+ + \nu_\mu$ decay after they are stopped at the RC.³⁾ The π^- events were selected using $\Delta E_i - \Delta E_j$ (energy deposition at each layers of RC) correlations obtained experimentally for π^+ events, because in-flight energy depositions are same between the π^+ and π^- events. However, a pionic atom, which is created by the stopped π^- and surrounding nuclei, decays various particles and some of them hit the next counter. Next we estimated a π^- leak rate to the next counter.

The leak rate α at which the decayed particles hit the next elements was estimated with CsI(¹²⁹Xe, π^{\pm})X experimental data at 90° for which, the statistics is sufficient and the S/N ratio is large. We obtained a typical value of α , 10.83^{+0.81}_{-0.59}(SYS) %. For obtaining the production cross section of the π^- , the reduction rate by the decay in flight, nuclear reaction, and multiple Coulomb scattering until the π^- reaches the RC from the production point was estimated using Geant4.

The Lorentz-invariant cross sections of the π^- as

Fig. 1. Lorentz-invariant cross sections of the π^- as a function of kinematic energy in the mid-rapidity frame (E_{mid}) for $\ln(^{28}\text{Si},\pi^{\pm})$ X reaction with 400(top part), 600(middle part) and 800(bottom part) MeV/nucleon beam with statistical errors.

a function of the kinematic energy of the π^- in a mid rapidity frame E_{mid} (the CM frame of NN) were shown at Figure 1. Further analysis of the π^- and efforts to fix the systematic uncertainties are in progress.

References

- B. A. Li, G. C. Yong, and W. Zuo, Phys. Rev. C 71, 014608 (2005).
- T. Murakami et al., Nucl. Phys. A 834, 593c (2010) (NN2009 proceedings).
- 3) M. Sako et al., RIKEN Accel. Prog. Rep. $\mathbf{46}, (2013).$

^{*1} RIKEN Nishina Center

^{*&}lt;sup>2</sup> Department of Physics, Kyoto University, Kyoto

^{*&}lt;sup>3</sup> Department of Accelerator and Medical Physics, NIRS

^{*4} Department of Physics, Rikkyo University, Tokyo

^{*5} Department of Physics, Tokyo University of Science

^{*6} Department of Physics, University of Tokyo