In-beam γ -ray spectroscopy of 34,36,38 Mg: Merging the N = 20 and N = 28 shell quenching[†]

P. Doornenbal,^{*1} H. Scheit,^{*1,2} S. Takeuchi,^{*1} N. Aoi,^{*1} K. Li,^{*1,2} M. Matsushita,^{*1,3} D. Steppenbeck,^{*1} H. Wang,^{*1,2} H. Baba,^{*1} H. Crawford,^{*4} C.R. Hoffman,^{*5} R. Hughes,^{*6} E. Ideguchi,^{*7} N. Kobayashi,^{*8}
Y. Kondo,^{*8} J. Lee,^{*1} S. Michimasa,^{*7} T. Motobayashi,^{*1} H. Sakurai,^{*1} M. Takechi,^{*1} Y. Togano,^{*1}
R. Winkler,^{*9} and K. Yoneda^{*1}

The neutron-rich $_{10}$ Ne, $_{11}$ Na, and $_{12}$ Mg isotopes are located within a region known as the "Island of Inversion" and form one of the most notable regions of sudden shell structure change. Abnormally high masses were discovered for ^{31,32}Na, leading to the presumption that the $\nu f_{7/2}$ orbitals intrude into the *sd* shell orbitals, thereby quenching the N = 20 shell gap. Later theoretical works predicted, however, that not the entire orbitals are inverted but $\nu(sd)^{-2}(fp)^2$ $(2\hbar\omega)$ configurations are lowered so much in energy that they form the ground states for $10 \le Z \le 12, 20 \le N \le 22$ nuclei instead.

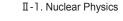
The N = 28 magic number is originally formed by the large $\nu f_{5/2} - \nu f_{7/2}$ spin-orbit splitting but is also known to vanish, as seen in the large deformation arising for ${}^{42}_{14}$ Si^{1,2}). Initially believed to be two isolated regions, we show in this letter that the N = 20, 28 shell quenching is interlinked via the neutron-rich magnesium isotopes, thereby forming a new connected large area of deformation in the Segré chart.

Key information on the shape of a nucleus can be obtained for even-even nuclei from the energy of the first excited 2^+ state $E(2^+_1)$, the first 4^+ state $E(4^+_1)$, and their $E(4_1^+)/E(2_1^+)$ ratio, $R_{4/2}$. Previous studies revealed a low excitation energy of 660(6) keV for the 2_1^+ state in ${}^{36}Mg$ and suggest that the "Island of Inversion" stretches at least to neutron number N = 24for the magnesium isotopes and thus beyond its originally proposed boundaries³). In the present study, the experimental knowledge of the $E(2_1^+)$ and $E(4_1^+)$ is extended to the N = 26 nucleus ³⁸Mg via one- and two-proton removal reactions..

A primary beam of ⁴⁸Ca with an average intensity of 70 particle nA and an energy of 345 MeV/nucleon was impinging on a 15 mm thick rotating Be target located at the BigRIPS fragment separator's entrance. Secondary beams were selected and purified via the $B\rho - \Delta E - B\rho$ method, and identified with

- *2School of Physics, Peking University
- *3 Department of Physics, Rikkyo University
- *4Nuclear Science Division, Lawrence Berkeley National Laboratory
- *5 Physics Division, Argonne National Laboratory
- *6 Department of Physics, University of Richmond
- *7 CNS, University of Tokyo
- *8 Department of Physics, Tokyo Institute of Technology
- NSCL, Michigan State University

Counts / 25 keV ³⁸Mg 80 556(6) 60 40 360(20 20 500 1000 15002000 Energy (keV)


Fig. 1. Doppler corrected γ -ray energy spectrum in coincidence with ³⁸Mg detected in BigRIPS and ZeroDegree.

the $\Delta E - B\rho$ – TOF method. The rate for ³⁹Al and ⁴⁰Si isotopes transported through BigRIPS was 75 and 3000 pps, respectively. The secondary beams were incident on a 2.54 g/cm^2 thick carbon secondary target, which was surrounded by the DALI2 spectrometer⁴). Reaction residues from the secondary target were identified by the ZeroDegree Spectrometer, applying again the $\Delta E - B\rho - \text{TOF}$ method.

Two γ -ray transitions were observed in ³⁸Mg from the 1p and 2p knockout channels after correcting for the Doppler shift, as shown in Fig. 1, which were attributed to the $2^+_1 \rightarrow 0^+_{gs}$ and the $4^+_1 \rightarrow 2^+_1$ decays. In ³⁶Mg, following a different reaction channel, a second transition was observed and attributed to the $4_1^+ \rightarrow 2_1^+$ decays, while for ³⁴Mg known values were determined with higher accuracy⁵⁾. Almost constant $R_{4/2}$ ratios of 3.14(5), 3.07(5), and 3.07(5) were obtained for ${}^{34,36,38}Mg$ at N = 22, 24, 26, close to the ideal value of 3.33 for a rigid rotor. The values were in agreement with state-of-the art shell model calculations and suggested that the N = 20 and N = 28shell quenching merge for the neutron-rich magnesium isotopes.

References

- 1) B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007).
- 2) S. Takeuchi et al., Phys. Rev. Lett. 109, 182501 (2012).
- 3) A. Gade et al., Phys. Rev. Lett. 99, 072502 (2007).
- S. Takeuchi et al., RIKEN Acc. Prog. Rep. 36, 148 4) (2003).
- 5) K. Yoneda et al., Phys. Lett. B, 233 (2001).

Condensed from the article in Phys. Rev. Lett. 111, 212502 (2013)

^{*1} **RIKEN** Nishina Center