Study of high-spin states in ³⁵S

S. Go,^{*1,*3} E. Ideguchi,^{*2} R. Yokoyama,^{*3} M. Kobayashi,^{*3} K. Kisamori,^{*1,*3} S. Michimasa,^{*3} S. Shimoura,^{*3}

M. Niikura,^{*4} A. Yagi,^{*5} H. Nishibata,^{*5} M. Sugawara,^{*6} M. Koizumi,^{*7} Y. Toh,^{*7} T. Shizuma,^{*7} A. Kimura,^{*7}

H. Harada,^{*7} K. Furutaka,^{*7} S. Nakamura,^{*7} F. Kitatani,^{*7} Y. Hatsukawa,^{*7} D. Suzuki,^{*8} I. Matea,^{*8}

D. Verney, ** and F. Azaiez**

Superdeformed rotational bands in the mass 40 region have been discovered in ${}^{36}\text{Ar}, {}^{11}\,{}^{40}\text{Ar}^{21}$ and ${}^{40}\text{Ca}^{31}$. The occurrence of the superdeformed structure in this region is related to the existence of large energy gaps that are formed between the down-sloping $f_{7/2}$ and the up-sloping $d_{3/2}$ and $d_{5/2}$ orbitals, as can be seen in the Woods-Saxon single particle diagram in Fig. 1. The diagram also indicates the superdeformed structure in sulfur isotopes since there is a large energy gap at Z = 16. The spin-parity of the superdeformed band

Fig. 1. Woods-Saxon orbitals as a function of the quadrupole deformation parameter β_2 . The calculation was performed by the WSBETA code⁴).

heads in odd-mass isotopes could give information about the orbital that drives the superdeformed structure. Therefore, we performed the in-beam gammaray spectroscopy to search for superdeformed states in ^{35}S at the Tandem-ALTO facility, Institut de physique Nucléaire d'Orsay.

High-spin states of ³⁵S were produced by the fusion evaporation reaction, ²⁶Mg(¹⁸O, $2\alpha 1n$)³⁵S. ¹⁸O beam energies of 75 and 80 MeV were used. The thickness of the ²⁶Mg target was 1 mg/cm². Gamma rays were

- $^{\ast 2}$ $\,$ Research Center for Nuclear Physics, Osaka University
- *³ Center for Nuclear Study, University of Tokyo
- *4 Department of Physics, University of Tokyo
- *5 Department of Physics, Osaka University
- *6 Chiba Institute of Technology, Faculty of Information and Computer Science
- *7 Japan Atomic Energy Agency
- *8 Institut de Physique Nucléaire d'Orsay

measured using the ORGAM array consisting of EU-ROGAM germanium detectors⁵⁾. A total of 13 detectors were installed at 5 different angles. The energy loss of charged particles from compound nuclei was measured by Si-Ball⁶⁾, a 4π array of 11 silicon detectors of 170 μ m in thickness.

In order to identify high-spin states of 35 S, the gamma–gamma coincidence analysis was performed. For instance, the transitions reported in the previous study⁷ were observed by gating the de-excitation gamma ray from the first excited state at 1302 keV of 35 S (see Fig. 2). All possible energy gates were examined to construct the level scheme. Thus, an 1576-keV E2 transition from the excited state at 8.8 MeV was found. The half-life was estimated to be less than a few hundred femto seconds due to the existence of the residual Doppler shift of the transition⁸. This means the transition has high-collectivity and indicates superdeformed band member in 35 S. Further analysis is being carried out.

Fig. 2. Gamma-ray energy spectrum of ^{35}S in coincidence with the 1302 keV transition.

References

- 1) C.E. Svensson et al.: Nucl. Phys. A, 682, 1 (2001).
- 2) E. Ideguchi et al.: Phys. Lett. B, 686, 18 (2010).
- 3) E. Ideguchi et al.: Phys. Rev. Lett. 87, 222501 (2001).
- 4) S. Ćwoik et al.: Comp. Phys. Comm. 46, 379 (1987).
- C.W. Beausang et al.: Nucl. Instr. Meth. A, **313**, 37 (1992).
- T. Kuroyanagi et al.: Nucl. Instr. Meth. A, **316**, 211 (1999).
- 7) E. Ideguchi et al.: CNS Ann. Rep. 2009, 23 (2011).
- B. Cederwall et al.: Nucl. Instr. Meth. A, **354** 591 (1995).

^{*1} RIKEN Nishina Center