Measurement of ⁴¹S spin polarization

H. Shirai,^{*1} Y. Ichikawa,^{*2} H. Ueno,^{*2} Y. Ishibashi,^{*2,*3} T. Suzuki,^{*1} T. Furukawa,^{*4} A. Yoshimi,^{*5} Y. Abe,^{*2,*3}
K. Asahi,^{*1} J. M. Daugas,^{*6} T. Fujita,^{*7} M. Hayasaka,^{*8} K. Imamura,^{*2,*9} S. Kishi,^{*8} S. Kojima,^{*1} D. Nagae,^{*3}
A. Nakao,^{*2} Y. Ohtomo,^{*1} T. Sagayama,^{*8} Y. Sakamoto,^{*1} and T. Sato^{*1}

Spectroscopic data have indicated the erosion of the N = 28 shell gap in several studies¹⁻⁴⁾. In particular, the isomeric state of ⁴³S at 320 keV is suggested to have a quasi-spherical shape with a spin-parity of $7/2^{-5.6)}$. On the other hand, the spin-parity of the ground state of ⁴³S has been neither confirmed nor predicted uniquely^{5,7,8)}. In order to investigate the mechanism of the N = 28 magicity loss through the determination of the spin parity of the ground state of ⁴³S, we aim to measure systematically the ground state electromagnetic moments for ^{41,43}S.

The electromagnetic moments of nuclei in their ground states are measured by combining the technique to produce spin-polarized RI beams⁹⁾ and the method of β -ray-detected nuclear magnetic resonance (β -NMR). In this scheme, the RIs are stopped in a crystal, which provides spin-lattice relaxation times T_1 that are longer than the β -decay halflife of the RI. In order to find out optimum conditions for the β -NMR measurement, the T_1 measurements were carried out for stopper crystal candidates, such as Si, ZnS, and CaS. In the measurements, an RI beam of ⁴¹S, for which a large yield was expected, was used, instead of ⁴³S, to measure the relaxation time T_1 .

The experiment was carried out at the RIPS¹¹) facility at RIBF. The RI beam of ⁴¹S was produced by the fragmentation of ⁴⁸Ca projectiles at an energy of E = 63 MeV/nucleon on a 0.52 mm-thick ⁹Be target. The intensity of the ⁴⁸Ca beam at the target was typically 200 pnA. The isotope separation of the ⁴¹S beam was conducted by the RIPS beam line, in which the emission angle $\theta_{\rm F}$ and momentum $p_{\rm F}$ of the fragment were selected so as to realize ⁴¹S spin-polarization. Under the condition of $p_{\rm F} = p_0 \times (1.015 \pm 0.025)$ and $\theta_{\rm F} > 1^\circ$, where p_0 represents the central momentum of the fragment ⁴¹S, the ⁴¹S beam was obtained from RIPS with a purity of 47% and an intensity of 1.6×10^4 particles/s.

The 41 S beam was then transported to the final focal plane and implanted into a stopper crystal located at the center of the adiabatic field rotation (AFR) device¹²⁾. The AFR device enables us to extract the

- *1 Department of Physics, Tokyo Institute of Technology
- *² RIKEN Nishina Center
- *³ Department of Physics, Tsukuba University
- *4 Department of Physics, Tokyo Metropolitan University
- *5 Research Core for Extreme Quantum World, Okayama University
- *6 CEA
- ^{*7} Department of Physics, Osaka University
- *8 Department of Physics, Tokyo Gakugei University
- *9 Department of Physics, Meiji University

asymmetry of β -ray emission without relying on the NMR technique, by only rotating a pair of Nd permanent magnets adiabatically. The β rays emitted from ⁴¹S were counted by plastic scintillators, two of which were set above the crystal and two others were set below it. The measurement was conducted according to the following sequence of cycles: beam irradiation for 2,900 ms, rotation of the AFR magnets for 150 ms, waiting time of 200 ms, and the β ray counting for 2.900 ms. The irradiation and counting time periods were chosen to be comparable with the meanlife of 41 S. The waiting margin was inserted in order to avoid spurious effects that might arise from a tiny vibration of the magnets following the rotation. The value of APwas deduced from β rays counts obtained in the following four different configurations with the field directions up/down and the magnet rotation true/false (hence, the spin is flipped/not flipped). Here, A and Pdenote the asymmetry parameter for the β -ray emission and the degree of polarization of ⁴¹S, respectively. From the results of the AFR measurement, we obtained AP = -0.14(4)% with the CaS multi-crystal stopper of 0.5 mm thickness, and T_1 was found to be longer than 4,600 ms in 1σ confidence level.

Following the T_1 and AP measurements, the g-factor search by means of the β -NMR method was carried out using the spin-polarized ⁴¹S with AP = -0.14% and the CaS crystal. Because the range within which the g-factor of ⁴¹S is predicted theoretically is quite wide, a fast switching system for changing the tank-circuit frequency¹³ has been used. The results of the NMR measurement are under analysis.

References

- 1) S. Grévy et al.: Eur. Phys. J. A 25, 111 (2005).
- 2) F. Sarazin et al.: Phys. Rev. Lett. 84, 5062 (2000).
- 3) R. W. Ibbotson et al.: Phys. Rev. C 59, 642 (1999).
- 4) Zs. Dombrádi et al.: Nucl. Phys. A727, 195 (2003).
- L. Gaudefroy et al.: Phys. Rev. Lett. **102**, 092501 (2009).
- R. Chevrier et al.: Phys. Rev. Lett. 108, 162501 (2012).
- 7) F. Nowacki et al.: Phys. Rev. C 79, 014310 (2009).
- I. Hamamoto: J. Phys. G: Nucl. Part. Phys. 37, 055102 (2010).
- 9) K. Asahi et al.: Phys. Lett. B **251**, 488 (1990).
- 10) K. Sugimoto et al.: J. Phys. Soc. Jpn. **21**, 213 (1966).
- 11) T. Kubo et al.: Nucl. Instrum. Meth. B 70, 309 (1992).
- Y. Ishibashi et al.: Nucl. Instrum. Meth. B **317**, 714 (2013).
- N. Yoshida et al.: Nucl. Instrum. Meth. B **317**, 705 (2013).