H.S. Jung,^{*1} C.S. Lee,^{*1} Y.K. Kwon,^{*1} J.Y. Moon,^{*1} J.H. Lee,^{*1} C.C. Yun,^{*1} S. Kubono,^{*2} H. Yamaguchi,^{*2} T. Hashimoto,^{*2} D. Kahl,^{*2} S. Hayakawa,^{*2} S. Choi,^{*3} M.J. Kim,^{*3} Y.H. Kim,^{*3} Y.K. Kim,^{*4,*5} J.S. Park,^{*4} E.J. Kim,^{*6} C.-B. Moon,^{*7} T. Teranishi,^{*8} Y. Wakabayashi,^{*9} N. Iwasa,^{*10} T. Yamada,^{*10} Y. Togano,^{*11} S. Kato,^{*12} S. Cherubini,^{*13,*14} and G.G. Rapisarda^{*13,*14}

We studied proton resonant states in ${}^{27}\text{P}$ via elastic scattering to investigate the ${}^{26}\text{Si}(p,\gamma){}^{27}\text{P}$ reaction, which is an important in the rp-process path for the understanding of the nucleosynthesis in explosive hydrogen burning^{1,2)}. This reaction is also relevant to the production of ${}^{26}\text{Al}{}^{3)}$. The knowledge of the structure of ${}^{27}\text{P}$ is still insufficient because of uncertain resonance parameters, such as resonance energies and spinparity assignments.

The measurement of the ${}^{26}Si+p$ elastic scattering was performed at the low-energy RI beam facility CRIB (CNS Radioactive Ion Beam separator) of the Center for Nuclear Study (CNS), the University of Tokyo^{4,5)}, by bombarding a H_2 gas target with a ²⁶Si radioactive ion beam in inverse kinematics⁶) and detecting scattered protons using silicon detectors for a ΔE -E telescope. We applied the thick-target method $^{(7,8)}$ to scan the entire energy region of interest simultaneously. The excitation function was obtained from the scattered proton energy spectrum by a kinematics conversion process. A ²⁴Mg primary beam with an energy of 7.5 MeV/A and an intensity of 1.6 $e\mu$ A extracted from the AVF cyclotron bombarded a ³He gas target which was at 550 Torr and 90 K. The secondary beam was produced by the ³He(²⁴Mg,²⁶Si)n reaction. Protons elastically scattered to the forward angles in the laboratory frame were detected by a ΔE -E telescope.

By calculating the kinematics, including energy loss in the target, the measured proton energy of each event was converted to a center-of-mass energy. We performed an analysis using the R-matrix calculation code (SAMMY-8.0.0)⁹⁾ to deduce resonance parameters such as excitation energy E_x , spin J, parity π , and

- [†] Condensed from the article in Phys. Rev. C. **85**, 045802 (2012)
- *1 Department of Physics, Chung-Ang University
- *² Center for Nuclear Study, University of Tokyo
- *³ Department of Physics and Astronomy, Seoul National University
- *4 Department of Nuclear Engineering, Hanyang University
- *⁵ Institute for Basic Science
- *6 Department of Education, Chonbuk National University
- *7 Faculty of Sciences, Hoseo University
- *8 Department of Physics, Kyushu University
- *9 Advanced Science Research Center, JAEA
- $^{\ast 10}$ Department of Physics, Tohoku University
- *¹¹ RIKEN Nishina Center
- *12 Department of Physics, Yamagata University
- $^{\ast 13}$ Laboratori Nazionali del Sud-INFN
- *¹⁴ Dipartimento di Fisica e Astronomia, Universita di Catania

Fig. 1. Final results for the excitation function of ²⁶Si+p as the best fits are shown but without firm spin-parity assignment for the doublet around 3.3 MeV.

proton partial width Γ_p of resonance states. Figure 1 shows best-fit results for the excitation function.

Six new resonant states in ²⁷P have been suggested, and we mostly determined their resonance parameters such as resonance energy, width, and spin-parity with the R-matrix calculation. Two small bumps around 3.39 MeV and 3.59 MeV were introduced to improve the fitting because exclusion of these resonances resulted in a less satisfactory fit for near resonant states. Parameters of resonant states in ²⁷P are expected to contribute to the nuclear data for the nuclear reaction network calculation of the rp-process nucleosysnthesis. The previous estimate of the total reaction rate of ²⁶Si(p,γ)²⁷P, which was evaluated by Iliadis *et al.*¹⁰, should be reanalyzed with the nuclear physics input newly obtained in present work.

References

- 1) H. Herndl et al.: Phys. Rev. C 52, 1078 (1995).
- 2) J. L. Fisker et al.: Astrophys. J. 174, 261 (2008).
- 3) R. Diel et al.: Astron. Astrophys. 298, 445 (1995).
- 4) S. Kubono et al.: Eur. Phys. J. A 13, 217 (2002).
- Y. Yanagisawa et al.: Nuc. Instrum. Methods Phys. Res. Sect. A 539, 74 (2005).
- 6) K.P. Artemov et al.: Nuc. Phys. 52, 408 (1990).
- 7) W. Galster et al.: Phys. Rev. C 44, 2776 (1991).
- 8) S. Kubono: Nuc. Phys. A 693, 221 (2001).
- A.M. Lane and R.G. Thomas: Rev. Mod. Phys. 30, 257 (1958).
- 10) C. Iliadis et al.: Nuc. Phys. A 841, 31 (2010).