Search for new isotopes near the proton drip-line close to 100Sn

The 100Sn nucleus, the heaviest doubly magic and particle-stable nucleus with N=Z, has been the subject of numerous experimental and theoretical studies. It is one of the most important nuclei for testing nuclear structure models.

Prior to the main 100Sn experiment in 2013, we performed a test experiment in December 2011 with the aim of optimizing the configuration settings of the BigRIPS separator at RIKEN, for the production and selection of 100Sn. This experiment was subsequently used to set up our main 100Sn experiment, which was performed in June 2013 and was dedicated to the measurement of Gamow-Teller matrix elements. The nuclei were identified on an event-by-event basis for the 128Sn setting. Red line indicates the limit of known isotopes. The relative r.m.s. Z and A/Q resolutions for the Sn and N=Z isotopes were 0.41% and 0.09%, respectively. Available signals from the PPACs, plastic scintillators, and ionisation chambers were used to apply additional off-line gates, which allows the removal of spurious events from the particle identification plot.

![Particle identification matrix Z vs A/Q](image)

Fig. 1. Particle identification matrix Z vs A/Q around the 100Sn after applying cleaning conditions.

We have discovered 3 new isotopes with more than 3 counts: 99Cd, 92Ag, 96Pd. The consistency of all measured signals of interest for each nucleus has been checked, and the assignment of these new isotopes is unambiguous. We have also tentatively assigned events to 104Te, 98Sn, and 86Ru, the identification of which has been recently reported by H. Suzuki.

References
3) D. Lubos et al.: RIKEN Acc. Prog. Rep (this volume).