Pairing correlation and quasi-particle resonances in neutron drip-line nuclei

Y. Kobayashi^{*1} and M. Matsuo^{*2}

In neutron drip-line nuclei, which have an extremely shallow Fermi surface, the pairing correlation is expected to influence low-energy scattering and resonances of a neutron. An interesting phenomenon predicted in the theory of superfluid nuclei is quasiparticle resonance.^{1–3)} A scattering neutron can couple to a hole state by creating a Cooper pair and thus resulting in a narrow resonance. The quasi-particle resonance has also been studied for neutron drip-line nuclei.^{4–6)} As neutron drip-line nuclei are expected to provide better opportunities for observation of quasiparticle resonance, we study these drip-line nuclei to clarify the properties of quasi-particle resonance. In the present study, we focus on the influence of the pairing on the resonance width.

We use the coordinate space Hartree-Fock-Bogoliubov (cHFB) equation⁷⁾ to describe the scattering wave function of a neutron under the pairing effect. We solve the cHFB equation such that the quasi-particle wave function satisfies the scattering boundary condition:

$$\left(\begin{array}{c} u_{lj}(r)\\ v_{lj}(r) \end{array}\right) \to \left(\begin{array}{c} \cos\delta_{lj}j_l(k_1r) - \sin\delta_{lj}n_l(k_1r)\\ Dh_l^{(1)}(\kappa_2r) \end{array}\right), (1)$$

where $k_1 = \sqrt{2m(\lambda + E)}/\hbar$, $\kappa_2 = \sqrt{-2m(\lambda - E)}/\hbar$. Here, m, λ and E are the mass of neutron, Fermi energy and quasi-particle energy, respectively. Next, we calculate the phase shift δ_{lj} and the elastic cross section.

We consider the (⁴⁶Si+n) system. According to several HFB calculations, ⁴⁶Si is a neutron drip-line nucleus of Si isotopes. We assume that this nucleus has a spherical shape. Note that ⁴⁶Si has a weakly bound 2p orbit. We use the Woods-Saxon potential as the nuclear potential, and the pair potential is also assumed to have the Woods-Saxon shape. The averaged pairing gap $\bar{\Delta}$ is a strength of the pair potential.

Fig.1 shows the calculated partial cross section. Narrow low-lying peaks seen in $p_{1/2}$ and $p_{3/2}$ are the quasi-particle resonances. These peaks disappear if we switch off the pairing as they are originally weakly bound $2p_{1/2}$ and $2p_{3/2}$ orbits in the Woods-Saxon potential. In order to analyze the effect of pairing on the resonance width, we calculate the width of the $p_{1/2}$ resonance for various pairing strengths $\overline{\Delta}$. We extract the resonance width and resonance energy from the phase shift using a fitting method. The green line in Fig.2

shows the relation between the resonance width and the resonance energy for various values of $\bar{\Delta}$. As the pairing strength increases, both the resonance width and the resonance energy increase. For comparison, we plot the width vs. energy relation for the singleparticle potential resonance of the $2p_{1/2}$ state (red line in Fig.2), which is obtained by varying the depth of the Woods-Saxon potential V_0 . If we compare these two results at the same resonance energy, we find that the width of quasi-particle resonance is narrower than the width of single-particle potential resonance. We conclude that the pairing has an effect of reducing the resonance width

Fig. 1. Partial cross section with $\overline{\Delta} = 1.0 \text{MeV}$.

Fig. 2. Comparison of results of resonance width.

References

- 1) S. T. Belyaev et al.: Sov. J. Nucl. Phys. 45, 783 (1987).
- 2) A. Bulgac: nucl-th/9907088.
- 3) J. Dobaczewski et al.: Phys. Rev. C 53, 2809 (1996)
- 4) M. Grasso et al.: Phys. Rev. C 64, 064321 (2000).
- 5) I. Hamamoto et al.: Phys. Rev. C 68, 034312 (2003).
- 6) J. C. Pei et al.: Phys. Rev. C 84, 024311 (2011).
- 7) J. Dobaczewski et al.: Nucl. Phys. A 422, 103 (1984).

^{*1} Graduate School of Science and Technology, Niigata University

^{*2} Department of Physics, Faculty of Science, Niigata University