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Angular momentum dependence of moments of inertia due to

Coriolis anti-pairing and blocking effects†

K. Sugawara-Tanabe∗1 and K. Tanabe∗1

In a series of papers,1,2) we have developed the top-
on-top model to systematically describe the level en-
ergies, and B(E2) and B(M1) values for in- and out-
of-band transitions in the triaxial strongly deformed
(TSD) bands in odd-A nuclei. Numerical analysis
have been performed for the TSD bands in odd-mass
Lu isotopes,1) 167Ta,2) and for the odd-odd nucleus
164Lu.3) Without the angular momentum dependence
(I-dependence) of the moments of inertia, the level en-
ergies along the TSD bands cannot be reproduced.
In order to investigate how the I-dependence arises,

we take into account both the Coriolis anti-pairing
(CAP) effect4) and the blocking effect within the
framework of the HFB theory. The cranking effect is
described in terms of the second-order perturbation to
the cranking term in the HFB equation based on the
BCS solution.7) In dealing with the gap equation, we
pay special attention to an integral wherein the finite-
ness of the system becomes tangible.
For the case of axially symmetric deformation, the

moment of inertia Jx is introduced through the con-
straint for the x-component of angular momentum Ix,
i.e., �Ix� = I−I0 = JxΩx, where � � stands for the qua-
sivacuum expectation value. We have assumed that
the system is independent of rotation (i.e., Ωx = 0) in
the band-head state with I = I0. Based on Refs.5,6),
we assume that only large matrix elements of single-
particle angular momentum (jx)αβ have a common ex-
citation energy of δ(= εβ − εα) between two single-
particle energy levels. Then, using the closure approx-
imation, we get the relation Jx and the rigid-body mo-
ments of inertia J rig

x for both even and odd nuclei.
In order to relate the gap value Δ to the angular mo-

mentum I, we need to solve the gap equation for both
even and odd nuclei.7) We apply a technique similar to
the one we used for deriving the relation between Jx
and J rig

x for both even and odd nuclei. Assuming that
Δ is still not too small, relevant summations over the
single-particle energies with a level density ρ (= 1/d)
(d is the average distance between single-particle en-
ergy levels) can be replaced by integrals. On the other
hand, when Δ is much smaller than d, we carry out the
summation without converting it into an integral, be-
cause an abnormal enhancement is found when Δ � d.
We adopt the picket fence approximation for the single-
particle energies. The sum is expanded into an asymp-
totic series, and we derive the formula using a func-
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Fig. 1. Angular momentum dependence of moments of in-

ertia for even and odd-A nuclei.

tional value of the Riemann Zeta function and Euler
constant.
In Fig. 1, we compare J (odd) (solid line) and J (even)

(dashed line) for the cases of Δ ≥ d (low-spin part)
and Δ � d (high-spin part). We adopt δ = 2 MeV
and J rig

x = 68 MeV−1; the starting pairing gap Δ is
0.8 MeV for an even nucleus and 0.6 MeV for an odd
nucleus, and the last single-particle energy in an odd
nucleus is 0.6 MeV based on measurements made from
the fermi surface.
As shown in the figure, the increase in the moments

of inertia becomes slow in high-spin parts, whereas
the gap values continue to decrease, maintaining a fi-
nite value. The curve for J (odd) starts from a higher
value than J (even) because of the blocking effect, and
it increases gradually, showing concave upward, which
agrees with the curve for the values adopted in Ref..3)
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Energy-density-functional calculations including proton–neutron
mixing†

K. Sato,∗1 J. Dobaczewski,∗2,∗3 T. Nakatsukasa,∗1 and W. Satu�la∗2

We performed calculations based on the Skyrme en-
ergy density functionals that include an arbitrary mix-
ing between protons and neutrons. This is the first
step towards the density functional calculation includ-
ing proton–neutron (p-n) pairing. The p-n pairing is a
long-standing open problem in nuclear physics, and its
possible relations to various nuclear phenomena have
been widely discussed.2) However, in spite of several
theoretical studies over the years since the late sixties,
a consistent theoretical treatment of the p-n pairing is
still missing. Our ultimate goal is to develop a consis-
tent symmetry-unrestricted energy-density-functional
(EDF) approach including the p-n mixing both in the
pairing and particle–hole (p-h) channels. To treat the
p-n pairing within the EDF framework, one needs to
generalize the quasiparticle states as mixtures of pro-
tons and neutrons. In connection with this extension
of quasiparticles, one also needs to extend density func-
tionals to those with mixing between protons and neu-
trons. In this work, as a first step in achieving our
goal, we consider an extension of EDFs including the
p-n mixing in the p-h channel, with both the rota-
tional and isospin symmetries conserved. We devel-
oped a code for the p-n mixing calculation by extend-
ing the code “HFODD,”3) which solves the nuclear
Skyrme–Hartree–Fock(–Bogolyubov) problem by us-
ing the Cartesian deformed harmonic-oscillator basis.
In this p-n mixing calculation, we performed the so-
called isocranking calculation by adding the isocrank-

ing term to the Hamiltonian: ĥ′ = ĥ−λ⃗·ˆ⃗t. Here, ˆ⃗t is the
isospin operator. The isocranking term is analogous to
that used in the standard tilted-axis-cranking calcula-
tions for high-spin states. By adjusting the isocranking
frequency λ⃗, we can control the size and direction of the
isospin of the system. We first performed isocranking
calculations for A = 14 and A = 48 systems with the
Coulomb interaction switched off, and we confirmed
that our code is correctly implemented. In this case,
the total and single-particle energies are independent
of the direction of the isospin of the system. Next, we
performed calculations with the Coulomb interaction
included. In this model, isobaric analog states (IASs)
are calculated by adjusting the isocranking frequency.
We developed an efficient method for determining the
isocranking frequency, with which we successfully cal-
culated the T ≃ 4 states in A = 40− 56 isobars.
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The isocranking calculation is a simple linear con-
straint method. We also implemented in our code an
improved method for optimization with constraints,
known as “the augmented Lagrange method,” and em-
ployed it for the calculation of the high-isospin states
in 48Cr. Such calculations can be used to study the
nuclear symmetry energy.

In Fig. 1, we plot the energies of the I = 0+, T = 1
triplet of states in the A = 14 isobars calculated us-
ing the SkM* EDF. The Tz = 0 IAS representing
the excited I = 0+, T = 1 state in 14N is calculated
by using the isocranking model and is described by
a single time-even Slater determinant built of single-
particle p-n mixed orbitals. Fig. 1 illustrates that
the model is indeed capable of quantitatively describ-
ing the excitation energies of the 0+, T = 1 IASs.
One can see that there is asymmetry between the
energy differences |E(Tz = 0) − E(Tz = −1)| and
|E(Tz = 0) − E(Tz = 1)|, which may be related to
charge asymmetry and independence of the NN in-
teraction. To investigate this point, we also started
a systematic calculation of the T = 1 triplets in the
A=10–58 region.

Fig. 1. Energies of T ≃ 1 states in A = 14 isobars in com-

parison with the experimental data4). To correct the

deficiency of the SkM* EDF, the calculated curve is

shifted up by 3.2 MeV.
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