Progress of study of β-decay of neutron-rich nuclei with $Z \sim 60$

J. Wu,1,2 S. Nishimura,1 G. Lorusso,1 Z.Y. Xu,3 H. Baba,1 F. Browne,1,4 R. Daido,5 P. Doornenbal,4 Y.F. Fang,5 E. Ideguchi,6 T. Isobe,1 Z. Li,2 A. Odahara,5 Z. Patel,1 S. Rice,1 G. Simpson,8 L. Sinclair,1,9 P.-A. Söderström,1 T. Sumikama,10 H. Watanabe,11 A. Yagi,5 R. Yokoyama,12 N. Aoi,6 F.L. Bello Garrote,13 G. Benzonì,14 G. Gey,17 A. Gottardo,15 G.D. Kim,16 Y.K. Kim,18 K. Kobayashi,17 I. Kojouharov,18 N. Kurz,18 H. Nishibata,15 H. Sakurai,18 M. Tanaka,6 J. Taprogge,19 T. Yamamoto15 and the EURICA collaboration

Approximately half of the elements heavier than iron are formed by the rapid neutron-capture process (r-process). In the solar r-process abundance distribution, the region of rare-earth elements forms a peak around $A = 160$, which may have a different mechanism of formation compared with the other two distinct peaks at $A = 130$ and $A = 195$ relating to neutron-closed shells at $N = 82$ and $N = 126$, respectively. β-decay half-lives of the elements always play an important role at both the cold and hot r-process paths and will be expected to constrain the conditions in understanding the r-process nucleosynthesis.

To study the rare-earth peak, a β-decay experiment with $Z \sim 60$ was performed at the RIBF facility in June 2013. This experiment was carried out using the in-flight fission of a 345 MeV/nucleon 238U beam colliding with a Be target. The secondary beam, including a cocktail of highly neutron-rich isotopes, was implanted in the β-decay counting system WAS3ABi2(Wide-range Active Silicon-Strip Stopper Array) for Beta and ion detection), which consists of a stack of five highly segmented DSSSDs (Double-Sided Silicon Strip Detectors). With the help of the high-purity germanium detectors (EURICA)3, γ rays with a high production rate emitted from implanted radioactive isotopes or the daughters nuclei fed through the β-decay can be measured. The β-decay half-lives could be determined by fitting the distribution of the time difference between the implantations in the WAS3ABi and the following β-decay events.

In this experiment, approximately 35 half-lives were measured, including approximately 25 new half-lives.