Evidence for a new nuclear 'magic number' in ${}^{54}Ca^{\dagger}$

D. Steppenbeck,^{*1} S. Takeuchi,^{*2} N. Aoi,^{*3} P. Doornenbal,^{*2} M. Matsushita,^{*1} H. Wang,^{*2} H. Baba,^{*2} N. Fukuda,^{*2} S. Go,^{*1} M. Honma,^{*4} J. Lee,^{*2} K. Matsui,^{*5} S. Michimasa,^{*1} T. Motobayashi,^{*2} D. Nishimura,^{*6} T. Otsuka,^{*1*5} H. Sakurai,^{*2*5} Y. Shiga,^{*7} P.-A. Söderström,^{*2} T. Sumikama,^{*8} H. Suzuki,^{*2} R. Taniuchi,^{*5}

Y. Utsuno,^{*9} J. J. Valiente-Dobón,^{*10} and K. Yoneda^{*2}

Over recent years, the evolution of nuclear shell structure in exotic, neutron-rich nuclei has attracted much attention on both the experimental and theoretical fronts. In the neutron-rich fp shell, the onset of the N = 32 subshell closure is well established from the structural characteristics of ${}^{52}Ca^{1,2)}$, ${}^{54}Ti^{3,4)}$ and ${}^{56}\mathrm{Cr}^{5,6)}$. This subshell gap is reproduced successfully by numerous theoretical predictions. In the framework of tensor-force-driven shell evolution⁷), the onset of the N = 32 subshell closure results as a direct consequence of a sizable $\nu p_{3/2} - \nu p_{1/2}$ gap, which presents itself as the $\nu f_{5/2}$ orbital shifts up in energy owing to a weakening of the attractive $\pi f_{7/2} - \nu f_{5/2}$ interaction as protons are removed from the $\pi f_{7/2}$ orbital. Another important manifestation of some theories is the prediction of a large subshell gap at N = 34, which develops if the $\nu f_{5/2}$ orbital lies sufficiently high in energy above the $\nu p_{1/2}$ orbital. It has already been shown that no significant N = 34 subshell gap exists in ⁵⁶Ti^{4,8} or ⁵⁸Cr^{6,9} and, therefore, the size of the energy gap in 54 Ca is an important structural characteristic that requires experimental input. Moreover, the single-particle states of 53 Ca should also reflect the nature of the N = 34subshell closure in isotopes far from stability.

The structures of ⁵⁴Ca and ⁵³Ca were investigated using in-beam γ -ray spectroscopy at the RIBF to address this issue. A primary beam of 70 Zn³⁰⁺ ions at 345 MeV/u was used to create a radioactive beam containing ⁵⁵Sc and ⁵⁶Ti, which was focused on a 10-mm-thick

- Fig. 1. (colour) Particle identification plots measured by (a) the BigRIPS separator and (b) the ZeroDegree spectrometer. The black circle indicates ⁵⁴Ca events.
- Condensed from the article in Nature **502**, 207 (2013).
- *1 Center for Nuclear Study, University of Tokyo.
- *2 **RIKEN** Nishina Center.
- *3 RCNP, University of Osaka.
- *4Center for Mathematical Sciences, Aizu University.
- *5 Department of Physics, University of Tokyo.
- *6 Department of Physics, Tokyo University of Science.
- *7 Department of Physics, Rikkyo University. *8
- Department of Physics, Tohoku University. *9
- Japan Atomic Energy Agency.
- ^{*10} Laboratori Nazionali di Legnaro.

Fig. 2. (colour) Doppler-corrected γ -ray energy spectra for (a) 54 Ca and (c) 53 Ca. Insets (b) and (d) indicate γ rays in coincidence with the 2043- and 1753-keV lines.

Be reaction target located inside the DALI2 γ -ray detector array at F8. Reaction products were identified with the ZeroDegree spectrometer (see Fig. 1).

The energy spectra for ⁵⁴Ca and ⁵³Ca deduced in the present work are presented in Fig. 2. The most intense peak in the 54 Ca spectrum, the line at 2043(19) keV, is assigned as the $2_1^+ \rightarrow 0^+$ ground-state transition. Several other weaker lines are also reported. The relatively high energy of the 2^+_1 state reflects the doubly magic nature of ⁵⁴Ca and provides direct experimental evidence for the onset of a sizable subshell closure in N = 34 isotones far from stability. Shell-model calculations adopting a modified GXPF1B Hamiltonian indicate that the strength of the N = 34 subshell gap in ⁵⁴Ca (the $\nu p_{1/2} - \nu f_{5/2}$ SPO energy gap) is in fact comparable to the N = 32 subshell gap in ⁵²Ca (the $\nu p_{3/2} - \nu p_{1/2}$ SPO energy gap) (see original Letter for details). In the 53 Ca spectrum, the 1753(15)-keV transition is reported for the first time, while the line at 2227(19) keV is consistent in energy with a transition previously measured in a decay study¹⁰).

References

- 1) A. Gade et al., Phys. Rev. C 74, 021302(R) (2006).
- 2) F. Wienholtz et al., Nature 498, 346 (2013).
- 3) R. V. F. Janssens et al., Phys. Lett. B 546, 55 (2002).
- 4) D.-C. Dinca et al., Phys. Rev. C 71, 041302(R) (2005).
- 5) R. Chapman et al., Nucl. Phys. A 119, 305 (1968).
- 6) A. Bürger et al., Phys. Lett. B 622, 29 (2005).
- 7) T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).
- 8) S. N. Liddick et al., Phys. Rev. Lett. 92, 072502 (2004).
- 9) J. I. Prisciandaro et al., Phys. Lett. B 510, 17 (2001).
- 10) F. Perrot et al., Phys. Rev. C 74, 014313 (2006).