Seniority isomer in ¹²⁸Pd[†]

H. Watanabe*1,*2 and EURICA U-beam collaboration in 2012

The level structure of the very neutron-rich nucleus ¹²⁸Pd has been studied for the first time. Neutron-rich nuclei below ¹³²Sn were produced using in-flight fission of a $^{238}\mathrm{U}^{86+}$ beam at 345 MeV/nucleon impinging on a 3-mm-thick beryllium target. The primary beam intensity ranged from 7 to 12 pnA during the experiments. The nuclei of interest were separated by the BigRIPS separator and the following ZeroDegree spectrometer. The identified particles were implanted into a highly segmented active stopper named WAS3ABi¹⁾, which consisted of eight double-sided silicon-strip detectors (DSSSD) stacked compactly. Each DSSSD had a thickness of 1 mm with an active area segmented into sixty and forty strips (1-mm pitch) on each side in the horizontal and vertical directions, respectively. The DSSSDs also served as detectors for electrons following β -decay and internal conversion processes. Gamma rays were detected by the EURICA spectrometer²⁾, which consisted of twelve Cluster-type detectors, each of which contained closely packed seven HPGe crystals.

Figure 1 shows a γ -ray energy spectrum measured in delayed coincidence with $^{128}\mathrm{Pd}$ ions. Four γ rays at energies of 75, 260, 504, and 1311 keV have been unambiguously observed. These γ rays are found to be in mutual coincidence and exhibit consistent time behavior. Therefore, we conclude that they proceed through a single cascade originating from one isomeric state. A least-squares fit of the summed gated time spectra of the isomeric-decay transitions yields $T_{1/2} = 5.8(8) \mu s$ half-life, as shown in Fig. 1. The relative intensities of these isomeric γ rays are in agreement within experimental errors, except for the 75-keV transition that is expected to be highly converted. The total internal conversion coefficient for the 75-keV transition derived from a comparison with the 1311-keV γ -ray intensity is 2.6(17), which is consistent with the theoretical value of 3.88 for an E2 multipolarity.

On the basis of the above arguments on the observed γ transitions, the level scheme of $^{128}{\rm Pd}$ is proposed as displayed in Fig. 1, where the spin and parity of the 5.8- μ s isomeric state at 2151 keV is assigned as $J^{\pi}=8^{+}$. The spin-parity assignment for the levels and the ordering of the transitions between the isomer and the ground state are based on a close resemblance to the yrast level energies below the analogous 8^{+} isomers in $^{130}{\rm Cd}^{3)}$ and $^{96}{\rm Pd}$ $(N=50)^{4)}$. A transition strength of $B(E2;8^{+}\rightarrow6^{+})=0.22(3)$ W.u. can be obtained from the measured half-life of the 2151-keV isomeric

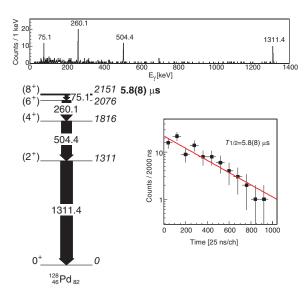


Fig. 1. Gamma-ray spectrum measured in coincidence with $^{128}{\rm Pd}$ ions within 0.15 - 25 $\mu{\rm s}$ (top), level scheme of $^{128}{\rm Pd}$ (bottom left), and sum of time distributions of the 260-, 504-, and 1311-keV γ rays in $^{128}{\rm Pd}$ (bottom right).

state.

The excitation energies of the $J^{\pi} = 2^{+} - 8^{+}$ states in ¹²⁸Pd are comparable to those in ¹³⁰Cd³⁾. The constancy of level energies is characteristic of the seniority scheme, where seniority v counts the number of nucleons that are not in pairs coupled to spin zero. In the case of an *n*-particle (or *n*-hole) system in a single-*j* shell, the level energies with identical J^{π} and v are independent of n. Such energy properties are also visible for the even N=50 isotones from Mo (Z=42) to Cd (Z=48), in which the yrast $J^{\pi}=2^{+}-8^{+}$ levels consist of the same multiplet that involves predominantly valence protons in the $\pi g_{9/2}$ orbital with v=2. Since the single-proton levels in the Z = 28 - 50 shell are nearly identical in the ¹³²Sn and ¹⁰⁰Sn regions, it is expected that the level properties exhibited by the N=82 isotones are similar within the valence proton space to those in the case of N = 50. Therefore, the excited states in ¹²⁸Pd can be interpreted in terms of the v=2 configuration of the $\pi g_{9/2}$ subshell.

References

- 1) S. Nishimura: Prog. Theor. Exp. Phys. 03C006 (2012).
- 2) P.-A. Söderström et al.: Nucl. Instrum. Methods B 317, 649 (2013).
- 3) A. Jungclaus et al.: Phys. Rev. Lett. 99, 132501 (2007).
- 4) W. Kurcewicz et al.: Z. Phys. A 308, 21 (1982).

[†] Condensed from the article in Phys. Rev. Lett. **111**, 152501 (2013)

^{*1} IRCNPC, School of Physics and Nuclear Energy Engineering, Beihang University

^{*2} RIKEN Nishina Center