Exploration of cluster structure on neutron rich nuclei 16C with SAMURAI magnetic spectrometer

The highly excited states in weakly bound unstable nuclei have been attracting considerable interest recently. In particular, an important question is whether alpha-cluster degree of freedom emerges near the threshold in unstable nuclei as in stable nuclei. For stable nuclei, the Ikeda diagram predicts such threshold in unstable nuclei as in stable nuclei. For unstable nuclei, the Ikeda diagram predicts such threshold as well. However, this threshold-rule has not been examined for unstable nuclei.

The present study is aimed at searching cluster states in the neutron-rich nucleus 16C through alpha inelastic scattering at incident energy of 200 MeV/nucleon. Such a technique has been successfully applied on various stable isotopes2.

![Fig. 1. Experimental setup. Detectors on the SAMURAI focal plane are arranged for alpha + residual particle detection.](Image 340x288 to 526x388)

A secondary beam of 16C at 200 MeV/u and an intensity of 2×10^5 Hz is impinged on a 7 mm thick cryogenic liquid 4He target3. The experiment was performed by using the SAMURAI spectrometer4. The large momentum acceptance property enables us to detect $A/Z=3$ particle and $A/Z=2$ particle including alpha simultaneously. The experimental setup is shown in Fig.1. The setup is similar to that used for the SAMURAI Day–one experiments5. The $A/Z=2$ particles were detected using $A/Z=2$ arm consisting of FDC3 and HODP. The $A/Z=3$ particles were detected using FDC2 and HODF ($A/Z=3$ arm). The correlation between ΔE and detector ID of HOD gated by the alpha particle in the $A/Z=2$ arm is shown in Fig.2, where 11,12Be arising from the breakup of 16C can be clearly identified.

From the measured four momenta of alpha particle and the corresponding Be isotopes, the invariant mass of 16C* will be reconstructed. For such a purpose, multiple track reconstruction techniques on drift chambers have been developed6. The analyses of the data are in progress.

![Fig. 2. Particle identification on SAMURAI focal plane.](Image 40x292 to 335x501)

$Z = 4$ particles are identified on $A/Z=3$ arm in coincidence with alpha particles, which are gated on the $A/Z=2$ arm.

In summary, we first measured the alpha dissociation channel on excited 16C using the SAMURAI spectrometer. Our future scope will focus on sd shell neutron rich nuclei such as 26,30Ne.

References
6) M. Kurata-Nishimura, et. al., RIKEN Accel. Prog. Rep. 47, this volume.