New isotope candidates, ²¹⁵U and ²¹⁶U

Y. Wakabayashi,^{*1} K. Morimoto,^{*1} D. Kaji,^{*1} H. Haba,^{*1} M. Takeyama,^{*1,*2} S. Yamaki,^{*1,*3} K. Tanaka,^{*1,*4} K. Nishio,^{*5} M. Asai,^{*5} M. Huang,^{*1} J. Kanaya,^{*1} M. Murakami,^{*1,*6} A. Yoneda,^{*1} K. Fujita,^{*7} Y. Narikiyo,^{*7} T. Tanaka,^{*7} S. Yamamoto,^{*7} and K. Morita^{*1,*7}

Theory¹⁾ predicts that nuclei with N = 126 exist up to Fm(Z = 100) because of the appearance of the fission barrier originating from the ground-state shell correction. The heaviest N = 126 nuclei reported so far is ²¹⁸U(Z = 92). In this paper, we attempt to produce heavier nuclei such as ²²⁰Pu. In our experiment, we observed a new isotope, ²¹⁶U, which is the daughter nucleus of ²²⁰Pu.

We performed an experiment at the RIKEN Linear Accelerator (RILAC) facility. We used ⁸²Kr beams of 372 and 387 MeV to bombard a rotating BaCO₃ target foil having a thickness of approximately 400 $\mu g/cm^2$. To determine the efficient reaction for the production of 216 U, we studied the reaction 82 Kr + 136,137,138 Ba leading to the same nucleus ²¹⁶U with different neutron evaporation channels. Each ^{136,137,138}BaCO₃ target was prepared by sputtering on $0.8-2.3-\mu$ m-thick aluminum foils, and they were also covered with 40 $\mu g/cm^2$ of aluminum by sputtering. Several 0.8- μ mand 1.1- μ m-thick aluminum foils were prepared as the degraders. The beam energies at the center of the target were changed from 344 to 374 MeV by combining backings and degraders to obtain the excitation function. Evaporation residues (ERs) were separated from the beam particles and other reaction products using a gas-filled recoil ion separator (GARIS), and

Fig. 1. α - α correlation spectrum. The time difference between the implanted ERs and the parent α -decay, and between the parent and the daughter α -decays were within 150 ms and 2.2 s, respectively. The horizontal and vertical position windows in the PSD were within the same strip (~3.6 mm width) and ±1.5 mm, respectively.

- *1 RIKEN Nishina Center
- *2 Department of Physics, Yamagata University
- *³ Department of Physics, Saitama University
- *4 Tokoy University of Science
- *5 Japan Atomic Energy Agency
- *6 Department of Chemistry, Niigata University
- *7 Department of Physics, Kyushu University

they were implanted into a position-sensitive strip detector (PSD; 58 × 58 mm²) at the focal plane. Two timing detectors were set in front of the PSD to determine the time-of-flight (TOF) of the ERs. Time information was also used to distinguish between the α -decay events in the PSD and the recoil implantations. A Ge-detector was placed 6 mm behind the PSD for the α - γ coincidence measurement. In this experiment, 1.7×10^{17} and 2.7×10^{17} beam doses were accumulated at 372 MeV and 387 MeV, respectively.

Isotope identification was performed by using an α -decay chain with the help of known α -decay properties (energies and half-lives) of the descendants and the position correlations between the implanted ERs in the PSD and the subsequent α -decays. Figure 1 shows an α - α correlation spectrum obtained in this experiment. In Fig. 1, the candidates of the new isotopes, ²¹⁵U and ²¹⁶U, were observed. These α -decay properties and the obtained cross sections are summarized in Table 1. The decay energies and half-lives of these descendants agree well with those of the references. In the future, an additional irradiation experiment will be performed to confirm the production of ²¹⁵U and ²¹⁶U.

Table 1. α - α correlated events of ²¹⁵U and ²¹⁶U. The time and position difference between the implanted ERs and the α -decay are Δ T and Δ X, respectively. E_{beam} represents the ⁸²Kr beam energy at the center of the target.

	E_{α}	ΔT		ΔX	F	Reaction (E_{beam})
	(keV)			(mm)	C	Cross section
²¹⁶ U	8408	6.98 m	s	0.15	1	$^{37}Ba + ^{82}Kr (365)$
212 Th	7811	43.4 m	s	0.12	-	$\rightarrow {}^{216}\mathrm{U} + 3n$
208 Ra	7144	$2.23 \mathrm{~s}$		1.12	0	$0.19^{+0.44}_{-0.16}$ nb
204 Rn	6424	34.7 s		0.14		
^{215}U	8436	5.82 ms		1.02	136 Ba + 82 Kr (374)	
²¹¹ Th	7807	29.1 ms		0.72		$\rightarrow {}^{215}\mathrm{U} + 3n$
207 Ra	7124	$773 \mathrm{ms}$		0.36		$0.34^{+0.49}_{-0.22}$ nb
203 Rn	6474	$45.6 \mathrm{~s}$		2.71		
^{215}U	8230	$635 \ \mu s$		0.35		
211 Th	7799	$59.9 \mathrm{ms}$		0.99		
207 Ra	7145	$1.06 \mathrm{~s}$		0.39		
	E_{α} (ke	eV) ref.	۲	$\Gamma_{1/2}$ ref.		α -decay branch
212 Th	7802 ± 10			$30^{+20}_{-10} \text{ ms}$		99.7%
208 Ra	7133 ± 5		1	$1.3{\pm}0.2~{\rm s}$		95%
204 Rn	6418.9 ± 0.4			$74.4{\pm}1.8~{\rm s}$		72.4%
$^{211}\mathrm{Th}$	7792±14			$37^{+28}_{-11} \text{ ms}$		$\sim 100\%$
207 Ra	7131 ± 4		1	$1.2 \pm 0.1 \text{ s}$		$\leq 100\%$
²⁰³ Rn	6.499 ± 2		4	44 ± 2 s		66%

References

H. Koura and T. Tachibana: Butsuri (in Japanese), 60, 717 (2005).