Production of 262Db in the 248Cm(19F,αn)262Db reaction and decay properties of 262Db and 258Lr

We have been developing a gas-jet transport system coupled to GARIS as a novel technique for superheavy element chemistry. So far, isotopes of element 104, 261Rf, and element 106, 262Sg, have been produced for chemical studies in the 248Cm(19O,α5n) and 248Cm(22Ne,αn) reactions, respectively. In this work, we produced element 105, 262Db in the 248Cm(19F,αn) reaction and investigated its decay properties in detail for future chemical studies of Db.

248CmO$_2$ targets with thicknesses of 230, 290, and 330 μg/cm2 were prepared by electrodeposition onto a 2-μm Ti foil. The 19F$^+$ or 19F$^+$ ion beam was extracted from RILAC. The beam energies were 103.1 and 97.4 MeV at the middle of the target, and the typical beam intensity was 4 particle μA. The evaporation residues (ERs) separated by GARIS were guided into the gas-jet chamber through a 0.5-μm-thick Mylar window, which was supported by a grid with 84% transparency. Several magnetic rigidities were investigated in $Bp = 1.73$–2.09 Tm at a He pressure of 33 Pa; the optimal collection efficiency for 262Db was 81.1 ± 2.2% at $Bp = 1.89$ Tm. The ERs were then transported by a He/KCl gas jet to the rotating-wheel apparatus MANON for α/SF spectrometry. In MANON, aerosol particles were deposited on a Mylar foil of 0.5-μm thickness, 40 of which were set on the periphery of a rotating wheel. The wheel was stepped at 15.5 s intervals to position the samples between 15 pairs of Si PIN photodiodes.

We searched for time-correlated α-α event pairs in the time window of 58.5 s and in the energy range of 8.0 MeV $\leq E_x \leq 9.0$ MeV. As a result, 71 and 4 α-α pairs were found at 103.1 and 97.4 MeV, respectively. By referring to the α-particle energies (E_α) and half-lives ($T_{1/2}$) adopted for 262Db and its daughter 258Lr, 74 α-α pairs were reasonably assigned to 262Db \rightarrow 258Lr. One exceptional α-α pair at 103.1 MeV was 262Db \rightarrow 257Lr \rightarrow via the 248Cm(19F,6n) reaction. No α-α pair on 262Db produced in the 248Cm(19F,4n) reaction (262Db \rightarrow 258Lr) was observed. We also observed two SF events that correlated with the α decays with energies and decay times of 262Db. This suggests that small SF and/or EC branches exist in 258Lr; the EC decay daughter of 258Lr, 258No, is a short-lived SF decaying nuclide with $T_{1/2} \approx 1.2$ ms and $b_{SF} = 100\%$.\(^3\) On the basis of the semi-empirical systematics of nuclear mass and half-lives, the EC decay would be favored in 258Lr next to the α decay.\(^4\)

The observed decay patterns of 262Db and 258Lr are shown in Fig. 1. The α-particle energies of $E_\alpha = 8.46 \pm 0.04$ (α intensity $I_\alpha = 70 \pm 5\%$) and 8.68 \pm 0.03 MeV (30 \pm 5\%) were determined for 262Db, though three energies of $E_\alpha = 8.45$ (75\%), 8.53 (16\%), and 8.67 (9\%) had been adopted.\(^3\) The half-life of 262Db was measured to be $T_{1/2} = 33.8^{+4.4}_{-3.5}$ s, and this agrees well with $T_{1/2} = 34 \pm 4$ s in Ref.\(^3\). In this work, the SF activity with $T_{1/2} = 30.2 \pm 6.1$ s was also assigned to 262Db with a SF branch of $b_{SF} = 52 \pm 4\%$. This is larger than the currently adopted $b_{SF} = 33\%$.\(^3\) On the other hand, the α-particle energies of 258Lr range from $E_\alpha = 8.43$ to 8.73 MeV and the average α energy of $E_\alpha = 8.61$ MeV agrees well with $E_\alpha = 8.605$ MeV deduced from the α energies and intensities of 258Lr in Ref.\(^3\). The half-life of 258Lr, $T_{1/2} = 3.54^{+0.46}_{-0.36}$ s also agrees with that in Ref.\(^3\) ($T_{1/2} = 3.9^{+0.4}_{-0.3}$ s). The EC branch in 258Lr was first determined to be $b_{EC} = 2.6 \pm 1.8\%$. The cross sections for the 248Cm(19F,5n)262Db reaction were 2.1 ± 0.7 nb at 103.1 MeV and 0.23$^{+0.18}_{-0.11}$ nb at 97.4 MeV, while those for the 248Cm(19F,4n)262Db reaction were the upper limits of ≤ 0.064 nb at 103.1 MeV and ≤ 0.13 nb at 97.4 MeV.

Fig. 1. Observed decay patterns for the chain 262Db \rightarrow 258Lr \rightarrow (258No \rightarrow). The α-particle energies and intensities (I_α) of 258Lr and all decay data of 258No are taken from Ref.\(^3\).

References

4) H. Koura: private communication.