$1p_{3/2}$ Proton-Hole State in ¹³²Sn and Shell Structure Along N=82[†]

J. Taprogge,^{*1,*2,*3} A. Jungclaus,^{*1} H. Grawe,^{*4} S. Nishimura,^{*2} P. Doornenbal,^{*2} G. Lorusso,^{*2} G.S. Simpson,^{*5} P.-A. Söderström,^{*2} T. Sumikama,^{*6} Z.Y. Xu,^{*7} H. Sakurai,^{*2,*7} H.Watanabe,^{*2} on behalf of

the RIBF-85 and RIBF-60&62R1 collaborations

The nucleus ¹³²Sn is of particular interest for nuclear structure investigations since it is the only heavy neutron-rich doubly-magic nucleus far away from the valley of stability which is accessible for experimental studies. While ¹³²Sn as well as the neighboring Sn (Z=50) and Sb (Z=51) isotopes have been studied in detail in the past, the experimental information for nuclei in the region below ¹³²Sn is scarce. Important knowledge, e.g. with respect to the energies of the proton single-hole states in ¹³²Sn, is still missing.

In an experiment performed in December 2012 as part of the EURICA campaign at the Radioactive-Isotope Beam Factory (RIBF), the neutron-rich nuclei ^{131,132}Cd were produced by the in-flight fission of a ²³⁸U beam and implanted into the active stopper WAS3ABi. The γ rays emitted following the β decay of ¹³¹Cd and after β -delayed neutron emission of ¹³²Cd were detected with the EURICA array comprising 84 germanium crystals. A single γ ray with an energy of 988 keV was observed in the decays of both 131 Cd and 132 Cd. It was placed to populate the known $(1/2^{-}) \beta$ -decaying isomer in ¹³¹In at an excitation energy of $E_x = 365(8)$ keV thus defining a second excited state at 1353 keV. This newly identified state is preliminary assigned to have spin and parity of $3/2^{-}$ and to correspond to the previously unknown $1p_{3/2}$ proton single-hole state with respect to the 132 Sn core. A full account of the arguments which lead to this assignment is presented in Ref. $^{2)}$.

Using the newly established $1p_{3/2}$ proton singlehole energy, shell-model calculations have been performed to calculate the energies of the first excited 2^+ states and the proton gaps Δ_{2p} [defined here as $\Delta_{2p} = M(Z+2, N) + M(Z-2, N) - 2M(Z, N)$, with M(Z, N) the mass of a nucleus with Z protons and N neutrons] for the N=82 isotones below 132 Sn as shown in Fig. 1. For comparison, Fig. 1 also shows the results of similar SM calculations performed for the N=50 isotones below 100 Sn, in that case in comparison with available experimental information. While for the N=50 isotonic chain typical signatures of subshell closures are observed at Z=38 and $40^{3,4}$, they

- *⁵ LPSC, UJF, CNRS, INPG, Grenoble
- *6 Department of Physics, Tohoku University
- *7 Department of Physics, University of Tokyo

Fig. 1. a) and c): Energies of the first excited 2^+ states, E(2⁺), and b) and d): proton gaps, Δ_{2p} , in the even N=50 and N=82 isotones, respectively. The black lines (solid, dashed, and dotted) in c) and d) show the results of SM calculations assuming an increase of the 1*p* splitting by 0.5, 1.0, and 1.5 MeV, respectively.

disappear for the N=82 isotones below 132 Sn. The disappearance of the proton sub-shell closures has its origin in the small energy gap between the $1p_{1/2}$ and the next single-particle orbital (SPO), independent of the character of the latter. Figs. 1 c) and d) show the reappearance of the sub-shell gap when increasing the energy separation between the $1p_{1/2}$ orbit and the next SPO.

Without the existence of pronounced proton subshell closures the N=82 isotones ¹²⁰Sr and ¹²²Zr should behave as mid-shell nuclei and consequently enhanced cross-shell excitations are expected to lead to a reduction of the N=82 shell gap in that region. Such a reduction would have a significant impact on r-process calculations and it is therefore concluded that preference should be given to mass models which indeed predict a reduction of the N=82 gap, such as the HFB24⁵) approach.

References

- 1) J. Dobaczewski et. al., Phys. Rev. Lett. 72, 981 (1994).
- 2) J. Taprogge et. al., Phys. Rev. Lett. 112, 132501 (2014).
- 3) A. F. Lisetskiy et. al., Phys. Rev. C 70, 044314 (2004).
- T. Fastermann et. al. Prog. Part. Nucl. Phys. 69, 85 (2013).
- 5) S. Goriely et. al., Phys. Rev. C 88, 024308 (2013).

[†] Condensed from the article in Phys. Rev. Lett., Vol. 112, 132501 (2014)

 $^{^{\}ast 1}$ $\,$ Instituto de Éstructura de la Materia, CSIC

^{*&}lt;sup>2</sup> RIKEN Nishina Center

 $^{^{\}ast 3}$ Departamento de Física Teórica, Uni. Autónoma de Madrid

^{*4} GSI Helmholtzzentrum für Schwerionenforschung GmbH