Strong enhancement of jet-medium coupling in the quark-gluon plasma near transition temperature[†]

J. Liao*1,*2

A new, deconfined form of QCD matter known as the quark-gluon plasma is created in relativistic heavy ion collisions. In such collisions, highly energetic jets provide unique probe of the quark-gluon plasma properties. The observable quantifying jet energy loss is the nuclear modification factor, R_{AA} as well as its azimuthal anisotropy characterized by its second harmonic coefficient v_2 . Both RHIC and LHC measurements have shown a sizable v_2 in the high p_t region.

Recently the temperature dependence of jet-medium coupling, which may be quantified by the so-called jet transport coefficient $\hat{q}(T)$, has attracted significant interest. As was first found in^{1} , the geometric anisotropy v_2 at high p_t is particularly sensitive to such temperature dependence, and a simultaneous description of high $p_T R_{AA}$ and v_2 at RHIC requires a strong enhancement of jet-medium coupling in the near- T_c region. Furthermore, the near- T_c enhancement predicts a visible reduction of average opaqueness of the fireball from RHIC to LHC which was confirmed by analyzing how the R_{AA} evolves with beam energy^{2,3)}. Therefore phenomenologically there are robust evidences for such near- T_c enhancement, while a precise theoretical determination of such nontrivial T-dependence has not been known owing to the highly nonperturbative dynamics in the near- T_c regime.

One important approach for strongly coupled quarkgluon plasma is to use holographic QCD models. It is particularly important to introduce non-conformal physics that is most prominent around T_c . By constructing such a model⁴⁾, we have found that: 1) there are strong non-conformal, non-perturbative dynamics going on in the near- T_c region; 2) such dynamics leads to non-monotonic behavior in QGP thermodynamics as shown by the strong near- T_c peak of trace anomaly (which is well modeled by holography); 3) the same dynamics leads to non-monotonic behavior in QGP transport properties and in particular strong near- T_c enhancement of jet-medium coupling \hat{q}/T^3 (see Fig.1).

More recently we have developed a new jet quenching framework, CUJET3.0⁵⁾, that is shown to account well for both high p_T single inclusive hadron suppression R_{AA} and its azimuthal anisotropy v_2 at both RHIC and the LHC energies. CUJET3.0 model includes two new nonperturbative effects in the QCD transition temperature range $T \sim 140 - 250$ MeV: (1) the Polyakov loop suppression of color-electric scatter-

Fig. 1. Temperature dependence of jet-medium coupling from a non-conformal holographic QCD model⁴⁾.

Fig. 2. Temperature dependence of jet-medium coupling from the CUJET3.0 model⁵⁾.

ing and (2) the enhancement of scattering due to emergent magnetic monopoles near T_c . We find that the CUJET3.0 jet transport parameter $\hat{q}(E,T)/T^3$ peaks near T_c and has very strong nonconformal E and Tdependence up to $T \sim 400$ MeV. Extrapolating down to E = 2 GeV, we find a striking new connection between bulk perfect fluidity with $\eta/s \sim 0.1$ near T_c and high p_T high T perturbative jet quenching.

References

- J. Liao and E. Shuryak, Phys. Rev. Lett. **102**, 202302 (2009).
- X. Zhang and J. Liao, Phys. Rev. C 89, no. 1, 014907 (2014).
- 3) X. Zhang and J. Liao, Phys. Rev. C 87, 044910 (2013).
- D. Li, J. Liao and M. Huang, Phys. Rev. D 89, no. 12, 126006 (2014).
- J. Xu, J. Liao and M. Gyulassy, arXiv:1411.3673 [hepph].

[†] Condensed from the articles in Phys. Rev. D. 89, 126006 (2014) and in arXiv:1411.3673.

^{*1} Physics Department and Center for Exploration of Energy and Matter, Indiana University

^{*&}lt;sup>2</sup> RIKEN Nishina Center