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In this work we study the dressed quark mass depen-
dence of the pion and kaon electromagnetic form fac-
tors at the quark level using the Nambu-Jona-Lasinio
(NJL) model, which is a powerful chiral effective quark
model of QCD1). We choose the proper-time regular-
ization scheme and introduce an infrared cut-off as in
previous studies2,3) in order to include one important
aspect of quark confinement. In the calculation there is
one free model parameter, which we take as the dressed
light quark (u and d) mass M . The constituent quark
model suggests that M is about 0.3–0.4GeV, and it
is often fixed as 0.4 GeV in NJL model calculations.
However, in this work we show that the description of
the pion and kaon form factors, as well as other phys-
ical quantities, are sensitive to the dressed light quark
mass, and can be greatly improved if the dressed light
quark mass is taken to be M ≃ 0.25 GeV.

We first explore the quark condensates ⟨q̄q⟩, the
kaon decay constant fK , and the light (m) and strange
(ms) current quark masses using various values of the
dressed quark mass. Our results for these quantities
are shown in Table I. It is revealed that our results
for the three ratios ms/m, fK/fπ and ⟨s̄s⟩/⟨ℓ̄ℓ⟩ are
in excellent agreement with recent experimental anal-
yses and lattice QCD calculations, if the mass of the
dressed light quark is approximately M ≃ 0.25GeV.
Therefore, it is interesting to study the pion and kaon
form factors for the case where M is assumed to be
smaller than the usually adopted values.

Figs. 1 and 2 show our calculated results for the pion
and kaon form factors for the case M = 0.25 GeV. In
each figure the dotted line denotes the result when the
quark-photon vertex is treated as point-like (bare); the
dash-dotted line includes effects from the pion cloud;

Table 1. Results for the current quark masses, kaon decay

constant and quark condensates, for various values of

the dressed light quark mass M . Masses and fK are in

units of GeV, and quark condensates in units of GeV3.

The model parameters are chosen to reproduce fπ =

0.093 GeV, mπ = 0.14 GeV and mK = 0.49 GeV.

M m ms fK
⟨
ℓ̄ℓ
⟩

⟨s̄s⟩
0.20 0.0041 0.131 0.128 −(0.275)3 −(0.329)3

0.25 0.0086 0.227 0.110 −(0.214)3 −(0.224)3

0.30 0.0123 0.293 0.010 −(0.190)3 −(0.180)3

0.35 0.0150 0.331 0.094 −(0.177)3 −(0.159)3

0.40 0.0168 0.357 0.091 −(0.170)3 −(0.148)3

† Condensed from an article by Y. Ninomiya et al., Phys. Rev.
C 91, 025202 (2015).
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and the dashed line is the full result which also includes
the vector mesons contributions to the quark-photon
vertex. The solid line shows the monopole functions
which are determined so as to reproduce the empirical
charge radii. From these figures it is clear that the
data and the monopole functions can be reproduced
very well by choosing M ≃ 0.25 GeV and including
both the pion cloud and vector meson contributions.
Such good agreement can not be attained for the case
of M ≃ 0.4 GeV.

Fig. 1. Pion form factor for the case M = 0.25GeV.

Fig. 2. Kaon form factor for the case M = 0.25GeV.

W.B. acknowledges support by the Grant in Aid for Scien-
tific Research (Kakenhi) of the Japanese Ministry of Education,
Culture, Sports, Science and Technology, project no. 20168769.

References
1) T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221

(1994).
2) W. Bentz and A. W. Thomas, Nucl. Phys. A 696, 138

(2001).
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Chiral Magnetic and Vortical Effects at Weak Coupling

H. -U. Yee∗1,∗2

Chiral magnetic and vortical effects are parity-
odd transport phenomena in the hydrodynamics of a
plasma of chiral massless fermions, which are macro-
scopic manifestations of the underlying microscopic
chiral anomaly. For the plasma of a single right-handed
Weyl fermion, the chiral magnetic effect dictates a cur-
rent along an applied external magnetic field �B as
�J = µ

4π2
�B where µ is the chemical potential, and in

the case of chiral vortical effect, the vorticity of fluid
�ω = (1/2)�∇ × �v plays a role similar to the magnetic

field, �J = (µ2 + π2T 2/3)�ω. These effects are robust
due to the topological nature of chiral anomaly, and
should persist both in weak and strong coupling lim-
its. Demonstrating the expected universality of these
phenomena in weak and strong coupling limits is an
interesting and non-trivial test of the topological na-
ture of chiral anomaly. While the strong coupling limit
provided by AdS/CFT correspondence has successfully
confirmed the universality of these effects, the weak
coupling picture, albeit more intuitive, contains more
subtleties that need to be carefully taken into accounts.
In general, one can define the chiral magnetic

conductivity1) σχ(ω, k) by �J = σχ(ω, k) �B(ω, k)
where (ω, k) are frequency and longitudinal momen-
tum of the in-homogeneous time-dependent mag-
netic field �B(ω, k). One expects the zero frequency-
momentum limit of σχ(ω, k) to reproduce the topo-
logically robust result of chiral magnetic effect,
limk→0 limω→0 σχ(ω, k) = µ

4π2 . In the interaction-

free limit, both diagrammatic1) and kinetic2) ap-
proaches give a result for σχ(ω, k) such that
limk→0 limω→0 σχ(ω, k) �= limω→0 limk→0 σχ(ω, k) =
1
3 ·

µ
4π2 , while a hydrodynamic argument indicates that

there should not be such a difference between the two
limits3). Since hydrodynamic regime exists only in an
interacting theory, it is natural to study this issue in
an interacting theory going beyond the non-interacting
limit. In Ref.3) we showed in both kinetic and dia-
grammatic approaches that the above difference be-
tween two limits disappears in the presence of relax-
ation dynamics caused by interactions, confirming the
expectation from the hydrodynamics argument.
It is interesting to understand how chiral magnetic

and vortical effects arise in the quasi-particle picture
of kinetic theory of chiral fermions. The essential
ingredient that is responsible for chiral anomaly is
the Berry’s curvature in momentum space4,5), �b =
�∇p×Ap = �p/2|�p|3, where Ap is the Berry’s connection
of momentum-dependent chiral spinors. We showed in
Ref.6) that the quasi-particle energy in the presence of
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magnetic field is dictated to be ε(�p) = |�p| − �B · �p/2|�p|2
by Lorentz invariance where the second term is a spin-
magnetic moment interaction. This term brings about
several interesting consequences. Since the equilibrium
distribution is feq(�p) = 1/(exp[βε(�p)] + 1) the distri-
bution becomes distorted by the magnetic field, which
causes a net current along the magnetic field. This ef-
fect turns out to explain 1/3 of the full chiral magnetic
effect. On the other hand, the equation of motions of
quasi-particles with the Berry’s curvature is given by5)√
G�̇x = ∂ε/∂�p + (�b · ∂ε/∂�p) �B where

√
G = 1 + �b · �B

is the modified phase space density. The second term
proportional to �B induces a net current along the mag-
netic field even with spherically symmetric equilibrium
distribution. This contribution gives the rest 2/3 of the
full chiral magnetic effect.

Interestingly, a similar feature also exists in the chi-
ral vortical effect6). With the fluid vorticity �ω, a de-
tailed valance in the Boltzmann equation with conser-
vation of angular momentum �L = �x × �p + (1/2)�p/|�p|,
where the second term is the spin angular momen-
tum, dictates the equilibrium distribution to be feq =
1/(exp[β(ε− �ω·�p

2|�p| )] + 1) , which induces a net current

proportional to �ω: the result comprises 1/3 of the
full chiral vortical effect. From the spin-magnetic mo-
ment interaction term in the energy, − �B · �p/2|�p|2, one
can obtain a contribution to the current by the varia-
tion of the quasi-particle action with respect to eter-
nal gauge potential, the result of which takes a form
∆ �J =

∫
d3�p/(2π)3 (�∇f × �p/(2|�p|2)). With distribution

function f = feq(ε− �v · �p), the resulting current along
�ω constitutes the rest 2/3 of the chiral vortical effect.
In space-time dimensions higher than four, there are

generalizations of chiral magnetic and vortical effects.
A weak coupling computation of them in real-time
formalism was performed in Ref.7), which successfully
confirmed the hydrodynamics prediction in Ref.8)
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