Strong binding and shrinkage of single and double \bar{K} nuclear systems (K$^{-}$pp, K$^{-}$ppn, K$^{-}$K$^{-}$p and K$^{-}$K$^{-}$pp) predicted by Faddeev-Yakubovsky calculations

S. Maeda,*1 Y. Akaishi,*2,*3 and T. Yamazaki*2,*4

Fig. 1. Global view of the calculated bound-state energies (upper) and sizes (lower), R$_{KNC}$ and R$_{NN}$ of K nuclear clusters as functions of the KN interaction strength, $s^{(1=0)}_{NN}$, which is normalized so as to be -1 at the binding threshold. The zones of the standard “$\Lambda(1405)$ ansatz” (s = -1.37) and the “Chiral” ansatz (s = -1.22) are shown by vertical broken lines. The experimental value of the mass of K$^{-}$pp as observed by DISTO[7] is shown by a horizontal broken line, where a relativistic correction for the binding energy around 10 MeV is not taken into account.

Non-relativistic Faddeev and Faddeev-Yakubovsky calculations were made for K$^{-}$pp, K$^{-}$ppn, K$^{-}$K$^{-}$p and K$^{-}$K$^{-}$pp kaonic nuclear clusters, where the quasi bound states were treated as bound states by employing real separable potential models for the K$^{-}$K$^{-}$ and the K$^{-}$nucleon interactions as well as for the nucleon-nucleon interaction[1].

The binding energies and spatial shrinkages of these states, obtained for various values of the KN interaction, were found to increase rapidly with the KN interaction strength. Their behaviors are shown in a reference diagram, Fig. 1, where possible changes by varying the KN interaction in the dense nuclear medium are given. Using the $\Lambda(1405)$ ansatz with a PDG mass of 1405 MeV/c2 for K$^{-}$p, the following ground-state binding energies together with the wave functions were obtained: 51.5 MeV (K$^{-}$pp), 69 MeV (K$^{-}$ppn), 30.4 MeV (K$^{-}$K$^{-}$p) and 93 MeV (K$^{-}$K$^{-}$pp), which are in good agreement with previous results of variational calculation based on the Akaishi-Yamazaki coupled-channel potential[2–5]. The K$^{-}$K$^{-}$pp state has a significantly increased density where the two nucleons are located very close to each other, in spite of the inner NN repulsion. Relativistic corrections on the calculated non-relativistic results indicate substantial lowering of the bound-state masses, especially of K$^{-}$K$^{-}$p and K$^{-}$K$^{-}$pp states. A proper treatment of the inner NN interaction is necessary to describe these states.

References