
New way to produce dense double-antikaonic dibaryon system, K^-K^-pp , through $\Lambda(1405)$ -doorway sticking in p+p collisions

M. Hassanvand, *1,*2 Y. Akaishi, *1,*3 and T. Yamazaki*1,*4

A recent successful observation of a dense and deeply bound \bar{K} nuclear system, K^-pp , in the $p+p\to K^++K^-pp$ reaction in a DISTO experiment¹⁾ indicates that the double- \bar{K} dibaryon, K^-K^-pp , which was predicted to be a dense nuclear system^{2,3)}, can also be formed in p+p collisions.

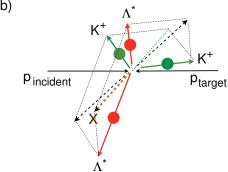


Fig. 1. Reaction diagrams in the center-of-mass system of pp collisions. a) For $pp \to K^+ + K^-pp$ and b) for $pp \to K^+ + K^+ + K^-K^-pp$. The $\Lambda(1405)$ resonance particle as a doorway is indicated by Λ^* .

We have formulated and calculated the differential cross section for the formation of the simplest double- \bar{K} nuclear cluster system, K^-K^-pp , in the reaction process

$$p + p \to K^{+} + K^{+} + \Lambda^{*} + \Lambda^{*},$$

 $\to K^{+} + K^{+} + K^{-}K^{-}pp,$
 $\to K^{+} + K^{+} + \Lambda + \Lambda,$

where Λ^* is a quasi-bound K^-p state corresponding to the $\Lambda(1405)$ resonance^{4,5)}. From a comprehensive

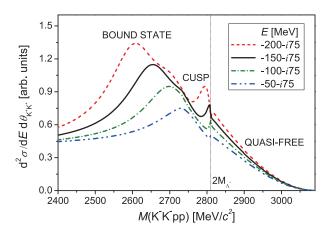


Fig. 2. (Color online) Differential cross sections for various bound-state energies, E, of the K^-K^-pp system for $T_p = 7.0 \text{ GeV}$, $\Gamma = 150 \text{ MeV}$, b = 0.3 fm and $\theta_{12} = 180$.

study of the calculated effects of the binding and density of K^-K^-pp on the cross section, we find that the bound-state peak of K^-K^-pp dominates over the spectrum when and only when the system is dense. This is understood as the two Λ^* doorway particles interact immediately within a short distance, assisted by a large momentum transfer ($\sim 1.8~{\rm GeV}/c$) and a short collision length ($\sim 0.3~{\rm fm}$), which helps to enlarge the $\Lambda^* - \Lambda^*$ sticking into a dense K^-K^-pp system. See details in Ref.^{4,5)}. This mechanism is similar to that for a single \bar{K} cluster (K^-pp) formation^{6,7)}, which has just been proven by the DISTO experiment.

References

- 1) T. Yamazaki et~al., Phys. Rev. Lett. ${\bf 104}~(2010)~132502.$
- 2) T. Yamazaki, A. Doté and Y. Akaishi, Phys. Lett. B $\bf 587~(2004)~167.$
- S. Maeda, Y. Akaishi and T. Yamazaki, Proc. Jpn. Acad. Ser. B 89 (2013) 418.
- 4) T. Yamazaki, Y. Akaishi and M. Hassanvand, Proc. Jpn. Acad. Ser. B 87 (2011) 362.
- M. Hassanvand, Y. Akaishi and T. Yamazaki, Phys. Rev. C 84 (2011) 015207.
- T. Yamazaki and Y. Akaishi, Proc. Jpn. Acad. Ser. B 83 (2007) 144.
- T. Yamazaki and Y. Akaishi, Phys. Rev. C 76 (2007) 045201.

^{*1} RIKEN Nishina Center

^{*2} Department of Physics, Isfahan University of Technology

College of Science and Technology, Nihon University

^{*4} Department of Physics, University of Tokyo