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Neutron stars (NSs) are not boring degenerate com-
pact objects with a uniform face, but exhibit a large
variety of observational diversities mainly due to a
wide range of magnetic field (B-field, ∼ 104–1012 T),
rotation spin period (P ∼ 10−3–104 s), and (in some
cases) mass accretion from a companion star. Binary
systems with NSs are conventionally classified into
high-mass X-ray binaries (HMXBs, an optical coun-
terpart mass Mc >10M�) or low-mass X-ray binaries
(LMXBs, Mc <1–2M�). The former and latter are
thought to host NSs with higher and lower B-field of
107−8 T and 104−6 T, respectively. However, the sym-
biotic X-ray binary (SyXB) 4U 1954+319 was recently
recognized as a rare system hosting a peculiar NS and
M-type companion, and found to be the slowest rotator
among known X-ray pulsars with P ∼5.4 h.

We performed two observations of 4U 1954+319
with the X-ray satellite Suzaku in 2011 (quiescent) and
2012 (flare phase), and investigated the spectral and
temporal nature of this peculiar system. Although the
optical counterpart is classified as a “low mass” star,
its X-ray features are quite similar to a wind-fed type

Fig. 1. The 1–10 keV X-ray count rates of 4U 1954+319

observed with X-ray CCD instruments (X-ray Imaging

Spectrometer) on board the Suzaku satellite1), during

a quiescent state (panel a and b) and an outburst (c

and d) in 2011 and 2012, respectively.
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Fig. 2. Spectral comparison of 4U 1954+319 with other

long period pulsars in HMXBs (modified from Enoto et

al., 20141)).

Fig. 3. Schematic view of the quasi-spherical accretion

from stellar wind in the X-ray binary 4U 1954+3191).

HMXB system; e.g., 1) high pulsed fraction, ∼60–80%,
2) shot-like mass accretion, characterized by the log-
normal distribution of the count rate (Fig.1), 3) broad-
band spectral similarity to low-luminosity slowly ro-
tating NSs in HMXBs (Fig. 2), and 4) a narrow 6.4
keV Fe-Kα line. Combined with a sign of the spin-
equilibrium over a long time scale, we proposed a quasi-
spherical accretion regime from a slow stellar wind
from the M-type companion (Fig. 3). Even though
we do not need an extremely strong B-field like magne-
tars, which were expected from the canonical disk-type
accretion, we still need a higher B-field in the range of
108−9 T as the HMXB-NSs rather than the LMXB-
NSs. Our study indicates a new interesting subclass of
X-ray pulsars, i.e., SyXBs, and casts a question on its
evolutionary path to make such a peculiar system.
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A powerful method for studying critical phenom-
ena with conformal defects is boundary conformal
field theory (BCFT). However, it has not been com-
pletely understood how BCFT describes the reflec-
tion/transmission at conformal defects. In this re-
port, we define the reflection/transmission coefficient
for conserved currents, as a natural generalization of
that based on the energy-momentum tensor.1)

We consider two one-dimensional quantum systems
connected by a junction, which can be considered as
an impurity interacting with the bulk. Let us assume
that the first system is in the positive domain x > 0,
the second is in the negative x < 0, and they are con-
nected at the origin as depicted in Fig. 1(a). Now
we shall describe the above system in terms of BCFT.
Corresponding to the two quantum systems, the BCFT
picture involves two CFTs: CFT1 and CFT2. These
CFTs are defined in the upper and lower half planes
respectively as depicted in Fig. 1(b). The real axis,
which divides the two CFTs, stands for the world line
of the impurity, or the defect. We can reformulate this
system to obtain CFT1×CFT2 in the upper half plane
thanks to the folding trick,2) as shown in Fig. 2. In this
way, the junction of the one-dimensional quantum sys-
tems can be mapped into a CFT boundary condition.

Fig. 1. From the impurity to the defect. (a) Two one-

dimensional systems are connected through the impu-

rity at x = 0. (b) Adding the time direction and taking

the continuum limit, that system is mapped into the

two-dimensional system with the defect along the line

x = 0.

We assume that CFT1,2 have the same symmetry
subalgebra C, which is preserved at the conformal de-
fect. For such a defect, we choose the following cur-

rent gluing condition
(
jtot,an + j

tot,a
−n

)
|B〉 = 0, where

jtot,an takes values in the Kac–Moody algebra Ĉ, and j
is the anti-holomorphic part. We then introduce the

† Condensed from the article in Nucl. Phys. B885 266 (2014)
∗1 RIKEN Nishina Center
∗2 Institut de Physique Théorique, CEA Saclay
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Fig. 2. From the defect to the boundary. By using the

folding trick, a system with the defect is mapped into

another system defined on the upper half plane with

the boundary.

R-matrix based on this boundary state |B〉,

R[C]ij,ab = −〈0|ji,a1 j
j,b
1 |B〉

〈0|B〉
. (1)

Since we have three constraints for this matrix, it has
only one degree of freedom. Letting ωB [C] be

dabωB [C] = − 1

k1k2(k1 + k2)

〈0|Ka
1K

b

1|B〉
〈0|B〉

, (2)

the R-matrix is given by

R[C] = k1k2
k1 + k2

((
k1

k2
1

1 k2

k1

)
+ ωB [C]

(
1 −1
−1 1

))
,(3)

where dab is the Cartan–Killing form, ki is the level
of the Kac–Moody algebra, and Ka

n = k2j
1,a
n − k1j

2,a
n .

We can introduce the reflection and transmission coef-
ficients based on this matrix:

R[C] = R11 +R22

k1 + k2
, T [C] = R12 +R12

k1 + k2
, (4)

which satisfy the current conservation R+T = 1. Ap-
plying this formula to the coset-type boundary state
with C = su(2),3) we obtain

T [su(2)] =
2k1k2

(k1 + k2)2

(
1−

S
(k1+k2)
00 S

(k1+k2)
ρ1

S
(k1+k2)
ρ0 S

(k1+k2)
01

)
,(5)

with the modular S-matrix of SU(2)k labeled by two

integers, S
(k)
ρµ =

√
2

k+2 sin
(

π
k+2 (2ρ+ 1)(2µ+ 1)

)
.
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