## Extraction of multi-nucleon transfer reaction products in $^{136}$ Xe and $^{198}$ Pt systems

Y. Hirayama,<sup>\*1</sup> H. Ishiyama,<sup>\*1</sup> S.C. Jeong,<sup>\*1</sup> H. Miyatake,<sup>\*1</sup> M. Oyaizu,<sup>\*1</sup> Y.X. Watanabe,<sup>\*1</sup> N. Imai,<sup>\*2</sup> M. Mukai,<sup>\*3</sup> S. Kimura,<sup>\*3</sup> Y.H. Kim,<sup>\*4</sup> M. Wada,<sup>\*5</sup> T. Sonoda,<sup>\*5</sup> P. Van Duppen,<sup>\*6</sup> Yu. Kudryavtsev,<sup>\*6</sup> and M. Huyse<sup>\*6</sup>

We have developed the KEK Isotope Separation System (KISS) to study the  $\beta$ -decay properties of the neutron-rich isotopes with neutron numbers around N = 126 for astrophysics research<sup>1-3)</sup>. In the KISS, a gas cell filled with argon gas at a pressure of 50 kPa, in which nuclei produced by multi-nucleon transfer reactions are to be stopped and collected, is essential equipment for selectively extracting the isotope of interest by using a resonant ionization technique. Using the elastic events of <sup>198</sup>Pt in the <sup>136</sup>Xe beam and <sup>198</sup>Pt target system, we evaluated the absolute extraction efficiency and beam purity of the KISS gas cell system. We successfully measured the lifetime of the unstable nucleus of <sup>199</sup>Pt extracted from the KISS.

We performed on-line tests using the <sup>136</sup>Xe beam with an energy of 10.75 MeV/nucleon and a maximum intensity of 20 pnA. The <sup>136</sup>Xe beam was directed onto the <sup>198</sup>Pt target placed in the gas cell, and was stopped at a tungsten beam dumper after passing through the gas cell. The thermalized and neutralized <sup>198,199</sup>Pt atoms of the reaction products were re-ionized in the gas cell, and the ions were extracted and detected after mass separation by using a Channeltron detector for ion counting. The lifetime of <sup>199</sup>Pt was measured by using  $\beta$ -ray telescopes newly installed at the E3 experimental hall<sup>4</sup>).

We successfully extracted laser-ionized <sup>198</sup>Pt atoms emitted from the target by elastic scattering. However, the <sup>198</sup>Pt ions formed molecular ions such as <sup>198</sup>PtH<sub>2</sub>,  $^{198}\text{PtH}_2\text{O}$ , and  $^{198}\text{PtAr}_2$  with the intensity ratio of 1, 1, and 6, respectively, relative to the intensity of <sup>198</sup>Pt ions. Figure 1 shows the measured extraction efficiency of the <sup>198</sup>PtAr<sub>2</sub> molecular ions (A = 278) as a function of the primary beam intensity. The extraction efficiency was defined as a ratio of the number of  $^{198}\mathrm{PtAr}_2$  ions detected to the number of  $^{198}\mathrm{Pt}$  atoms emitted from the target by elastic scattering (17 barn). The measured efficiency of about 0.20% was observed to be independent of the primary beam intensity, as shown in Fig. 1, owing to the bend structure of the gas cell. The obtained beam purity was > 99.7% at the maximum primary beam intensity of 20 pnA.

After the extraction of <sup>198</sup>Pt, we extracted laser-

- \*<sup>2</sup> Center for Nuclear Study, University of Tokyo
- \*<sup>3</sup> Department of Physics, University of Tsukuba
- \*<sup>4</sup> Department of Physics, Seoul National University
- \*5 RIKEN Nishina Center

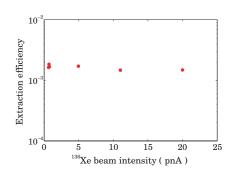



Fig. 1. Extraction efficiency of  $^{198}$ PtAr<sub>2</sub> molecular ions measured as a function of the  $^{136}$ Xe beam intensity.

ionized <sup>199</sup>Pt ( $t_{1/2} = 30.8(2)$  min) atoms that mainly formed <sup>199</sup>PtAr<sub>2</sub> molecular ions like <sup>198</sup>Pt did. Figure 2 shows the measured lifetime when <sup>199</sup>PtAr<sub>2</sub> molecular ions are used. The measured lifetime  $t_{1/2} = 33(4)$ min was in good agreement with the reported value. Thus, the molecular formation does not affect the lifetime measurement of unstable nuclei.

Considering the production rates of nuclei around N = 126 calculated by the GRAZING code<sup>1)</sup>, we can measure 12 new lifetimes with an efficiency of 0.1%, beam purity of > 99.7%, and a primary beam intensity of 20 pnA. To extend this study to more neutron-rich nuclei, we have been developing a new sextupole ion guide with a large angular acceptance for increasing the extraction efficiency.

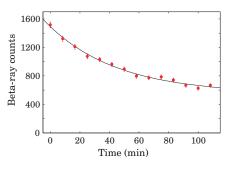



Fig. 2. Lifetime measurement of <sup>199</sup>Pt.

References

- 1) S.C. Jeong et al.: KEK Report 2010-2.
- Y. Hirayama et al.: RIKEN Accel. Prog. Rep. 44 (2011)
  25; 45 (2012) 152; 46 (2013) 176; 47 (2015).
- H. Ishiyama et al.: RIKEN Accel. Prog. Rep. 45 (2012) 151.
- S. Kimura et al.: reported in this RIKEN Accel. Prog. Rep. 48.

<sup>&</sup>lt;sup>\*1</sup> Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)

 $<sup>^{\</sup>ast 6}$   $\,$  Instituut voor Kern-en Stralingsfysica, KU Leuven