Yrast 6⁺ Seniority Isomers of 136,138Sn$^+$

G.S. Simpson,1,2,3,5 G. Gey,3,4,5 A. Jungclaus6, J. Taprogge,6,7,5 S. Nishimura,5 K. Sieja,8 P. Doornenbal,5 G. Lorusso,5,9 H. Sakurai,5,10 P.-A. Söderström,5 T. Sumikama,9 Z.Y. Xu,10 on behalf of the RIBF-85 collaboration

The shell model plays a key role in allowing a microscopic description of many of the properties of atomic nuclei. Its two ingredients are single-particle energies and effective nucleon-nucleon interactions. Experimental studies of semi-magic Sn nuclei beyond the doubly magic nucleus 132Sn provide information that allows the neutron-neutron part of effective interactions for the $N = 82 – 126$ valence space to be tested and optimized. More generally, such studies provide a key benchmark for the methods used to construct effective interactions in a heavy-mass region far from stability. Currently there is little experimental data on the Sn isotopes beyond the $N = 82$ shell closure, which are difficult to produce and study.

Excited states in the nuclei 136,138Sn have been investigated by detecting delayed γ-ray cascades using the EURICA spectrometer1, which was coupled to the BigRIPS separator of the RIBF facility. These exotic nuclei were produced by the in-flight fission of a 345 MeV/nucleon 208U beam. Cascades containing three delayed γ rays each were observed in coincidence with identified 136,138Sn ions. The spins of the isomeric states of 136,138Sn were assigned as (6^+), in analogy with a very similar delayed cascade previously reported for 134Sn2.

The energies of the excited states of 134,136,138Sn have been compared to the predictions of shell-model calculations, which used state-of-the-art realistic effective interactions. These calculations used the full $N = 82 – 126$ valence space and the effective single-particle energies were the experimental ones. The experimentally determined level energies of 134,136,138Sn were all well reproduced. The $B(E2; 6^+_1 \rightarrow 4^+_1)$ values were also correctly predicted for 134,138Sn, though this value was more than a factor of 5 away for 136Sn, as shown in Fig. 1. Three other shell-model calculations reported in the literature, using realistic and empirical effective interactions, also failed to reproduce the $B(E2; 6^+_1 \rightarrow 4^+_1)$ value for 136Sn and are off by at least a factor of 2.

Fig. 1. Experimental (black squares) and theoretical reduced transition rates for $6^+_1 \rightarrow 4^+_1$ transitions in $^{134-138}$Sn. The calculations used a realistic $V_{\text{low-k}}$ interaction (red filled circles), a pairing-modified $V_{\text{low-k}}$ interaction (blue open circles) and a pure $f_{7/2}$ seniority scheme (grey curve).

The near-constant energies of the (2^+_1), (4^+_1) and (6^+_1) states of 134,136,138Sn are characteristic of dominant seniority 2 (one broken pair) excitations. The $B(E2)$ values of seniority-conserving transitions are expected to follow the shape of a symmetric positive parabola, as shown in Fig. 1. The results obtained with a realistic $V_{\text{low-k}}$ interaction follow a similar pattern to the seniority 2 scheme. Additional shell-model calculations have been performed which allowed particle-hole excitations from the neutron $\nu 0h_{11/2}$ and proton $0g_{9/2}$ shells to the $N = 82 – 126$ and $Z = 50 – 70$ valence spaces, respectively. These allowed the influence of core polarization effects on the transition rates of the neutron-rich Sn nuclei to be examined. However, the $B(E2; 6^+_1 \rightarrow 4^+_1)$ value for 136Sn was still not correctly reproduced. Reducing the energies of the $\nu 1f_{7/2}^2$ diagonal and off-diagonal matrix elements by ~ 150 keV allowed the $B(E2; 6^+_1 \rightarrow 4^+_1)$ of 136Sn to be correctly predicted. This shift is equivalent to a reduction in the pairing strength. The results using this pairing-modified $V_{\text{low-k}}$ interaction are shown in Fig. 1. Similar modifications to pairing were necessary to reproduce the level schemes of 72,74Ni14, illustrating the need for additional theoretical efforts on the construction of effective interactions.

References