Rotational level structure of sodium isotopes inside the "Island of Inversion"[†]

P. Doornenbal,^{*1} H. Scheit,^{*1,*2} S. Takeuchi,^{*1} Y. Utsuno,^{*3} N. Aoi,^{*1} K. Li,^{*1,2} M. Matsushita,^{*1,*4}
D. Steppenbeck,^{*1} H. Wang,^{*1,*2} H. Baba,^{*1} E. Ideguchi,^{*5} N. Kobayashi,^{*6} Y. Kondo,^{*6} J. Lee,^{*1}
S. Michimasa,^{*5} T. Motobayashi,^{*1} T. Otsuka,^{*5} H. Sakurai,^{*1} M. Takechi,^{*1} Y. Togano,^{*1} and K. Yoneda^{*1}

The study of neutron-rich Ne, Na, and Mg nuclei around the breakdown of the N = 20 neutron magic number, an area in the Segré chart termed "Island of Inversion"¹) has provided a wealth of information on the evolution of nuclear shell structure away from the valley of β stability. Due to its location in the proximity of the neutron drip-line, accessing the "Island of Inversion" is an experimental challenge. In this paper, we report on the first γ -ray spectroscopy performed for the N = 23, 24 sodium isotopes 34,35 Na and a new transition in ³³Na. For the latter nucleus, previous measurements suggested that the observed two transitions originate from a $7/2^+_1 \rightarrow 5/2^+_1 \rightarrow 3/2^+_{q.s.}$ cascade and the energy ratio was found to be close to an ideal K = 3/2 rotational band in the strong coupling limit²).

A 48 Ca beam with an average intensity of 70 particle nA was accelerated by the Superconducting Ring Cyclotron to 345 MeV/u and incident on a 15 mm thick beryllium production target. A combination of two magnetic dipoles and a 15 mm thick aluminum degrader was utilized to filter a ³⁶Mg secondary beam with the BigRIPS fragment separator³⁾ by applying the $B\rho - \Delta E - B\rho$ method. For further purification, a second aluminum degrader of 5 mm thickness was inserted at the dispersive focal point of the second BigRIPS stage. After passing BigRIPS, the secondary beams were incident on 2.54 g/cm^2 carbon and 2.13 g/cm^2 CH₂ (polyethylene) reaction targets, respectively. BigRIPS was operated with its full momentum acceptance of $\pm 3\%$ and the average intensity of ³⁶Mg was 90 particles per second. Gamma-rays emitted in coincidence with the secondary reactions were detected with the DALI2 array⁴), which was composed of 186 large-volume NaI(Tl) detectors. The secondary reaction products were identified with the ZeroDegree Spectrometer³⁾.

In the present work, a third γ -ray transition was observed for 33 Na at 760(13) keV in addition to the two known ones, and forms a doublet with the $7/2^+_1 \rightarrow$ $5/2^+_1$ decay. For the odd-odd nucleus ³⁴Na, a sin-

- *3 Advanced Science Research Center, Japan Atomic Energy Agency
- Department of Physics, Rikkyo University
- *5Center for Nuclear Study, University of Tokyo
- *6Department of Physics, Tokyo Institute of Technology

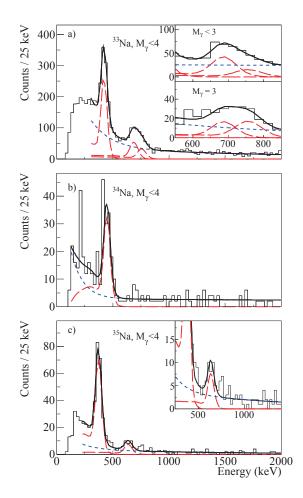


Fig. 1. Doppler corrected γ -ray spectra in coincidence with 33 Na a), 34 Na b), and 35 Na c). The analysis was restricted to event with a γ -ray multiplicity M_{γ} of less than 4.

gle γ -ray transition was observed at 451(7) keV, while the energy spectrum of ³⁵Na exhibited transitions at 373(5) and 641(16) keV. The level structure of the oddeven sodium isotopes was found to be well described by the SDPF-M effective interaction⁵).

References

- 1) E. K. Warburton et al., Phys. Rev. C 41, 1147 (1990).
- 2) A. Gade et al., Phys. Rev. C 83, 044305 (2011).
- 3) T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012).
- 4) S. Takeuchi et al., Nucl. Instr. Meth. A 763, 596 (2014).
- 5) Y. Utsuno et al., Phys. Rev. C 60, 054315 (1999).

Condensed from the article in Prog. Theor. Exp. Phys. 2014, 053D01 (2014).

^{*1} **RIKEN** Nishina Center

State Key Laboratory of Nuclear Physics and Technology, *2Peking University