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Perturbative matching for quasi-PDFs between continuum and lattice
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Parton distribution functions (PDFs) play an impor-
tant role in understanding the structure of nucleons.
In the search for the nucleon structure through exper-
iment, the PDF is important; however it is currently
estimated using the model assumption. Its direct lat-
tice QCD calculation is impossible because it basically
involves light-cone dynamics. In principle, the calcu-
lation can be made by operator product expansion;
this method, however, is quite difficult because in the
higher moments, the signal-to-noise ratios worsen. Re-
cently, a strategy has been proposed, in which a com-
putable quantity on the lattice (quasi-PDF) can be re-
lated to the (normal) PDF by perturbative matching.1)

The relation between the normal-PDF q(x, µ) and the
quasi-PDF �q(x, P3,Λ) can be written as
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where x is the momentum fraction of the parent hadron
being carried by a quark, µ is the renormalization scale,
and Λ is the UV cutoff scale. The quasi-PDF is pre-
sented by

�q(x̃,Λ, P3) =

∫
dδz

2π
e−ix̃P3δz⟨N (P3)|Oδz|N (P3)⟩, (2)

where the matrix element (ME) is defined as the transi-
tion amplitude between the in- and out-nucleon states
with momentum P3 in the z-direction; the non-local
operator elongated in the z-direction is described as

Oδz =

∫

x

ψ(x+ 3̂δz)γ3U3(x+ 3̂δz;x)ψ(x), (3)

with a Wilson line operator U3(x+ 3̂δz;x). The essen-
tial part in Eq. (2) is the nonperturbative ME, which
we call quasi-PDF ME and write Mδz(P3). This ME
can be calculated using the lattice QCD simulation be-
cause it is not time-dependent. We need a matching to
convert the ME obtained from the lattice calculation
to the continuum counterpart, which has been omit-
ted in the current lattice calculations and is a main
purpose of this report.

To achieve matching between lattice and continuum,
we have two choices: matching “in momentum space”
or “in coordinate space”. The first one is similar to the
continuum matching in Eq. (1). In this approach, δz
is first integrated out; thus, the z-component of the in-
coming and outgoing momentum at the vertex is fixed
to be x̃P3. However, we take the second approach,
which is simple and more easily controllable in the ac-
tual lattice QCD simulation. The matching is achieved
by a δz dependent matching factor:
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Fig. 1. One-loop coefficient of the matching factor.

[Mδz(P3)]
cont

= Z(δz) [Mδz(P3)]
latt

. (4)

As the matching factor for operators does not depend
on the external states, we can set P3 = 0 for the cal-
culation of the amplitude.

The transition amplitude involves power diver-
gences, which arises from the Wilson line operator in
both continuum and lattice. The power divergence
must be subtracted nonperturbatively so that the the-
ory is well-defined. There are several ways to perform
the subtraction and we choose to use a static QQ̄ po-
tential that shares the same power divergence. The
Wilson line operator with a contour C, WC , can be
renormalized as

WC = eδmℓ(C)W ren
C , (5)

where the superscript “ren” indicates that the opera-
tor is renormalized, ℓ(C) denotes the length along the
contour C, and δm denotes the mass renormalization
of a test particle moving along the contour C.2) By
choosing the renormalization condition for the static
QQ̄ potential at a distance R0 so that V ren(R0) = V0,
the mass renormalization can be obtained as3) δm =
(V0 − V (R0))/2. Using the renormalization condition
above, we can define power divergence free ME as

MS
δz(P3) = e

V (R0)−V0
2 |δz|Mδz(P3). (6)

We only show the matching factor between contin-
uum and lattice here using a naive fermion for sim-
plicity, while it is not realistic for the actual simula-
tion. We calculate it at one-loop order with HYP2
link smearing of the Wilson line and with mean-field
improvement. Figure 1 shows the one-loop coefficient
of the matching factor

Z(δz) = 1 +
g2

(4π)2
4

3
C(δz) +O(g4). (7)

Using this, we can obtain the ME in continuum and
the quasi-PDF can be calculated. We are currently
planning to perform the actual simulation with this
matching strategy.
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