$\Lambda_b \to p \, \ell^- \, \bar{\nu}_\ell$ and $\Lambda_b \to \Lambda_c \, \ell^- \, \bar{\nu}_\ell$ form factors from lattice QCD with relativistic heavy quarks[†]

S. Meinel,^{*1,*2} W. Detmold,^{*3} and C. Lehner^{*4}

The smallest and most uncertain element of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix is V_{ub} . Improved measurements of $|V_{ub}|$ are important because they constrain the length of the left side of the $(\bar{\rho}, \bar{\eta})$ unitarity triangle, which lies opposite the precisely known angle β^{1} . The matrix element $|V_{cb}|$ also plays a central role in flavor physics, as it normalizes the unitarity triangle and is the dominant source of uncertainty in Standard-Model predictions of the kaon CP-violation parameter ε_K^{2} .

Until recently, all direct determinations of $|V_{ub}|$ and $|V_{cb}|$ were performed using measurements of B meson semileptonic or leptonic decays at e^+e^- colliders. For both $|V_{ub}|$ and $|V_{cb}|$, there are tensions between the most precise extractions from exclusive and inclusive semileptonic B decays; the 2014 Review of Particle Physics lists¹

$$\begin{split} |V_{ub}|_{\text{excl.}} &= (3.28 \pm 0.29) \times 10^{-3}, \\ |V_{ub}|_{\text{incl.}} &= (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3}, \\ |V_{cb}|_{\text{excl.}} &= (39.5 \pm 0.8) \times 10^{-3}, \\ |V_{cb}|_{\text{incl.}} &= (42.2 \pm 0.7) \times 10^{-3}. \end{split}$$

The Large Hadron Collider allows new determinations of $|V_{ub}|$ and $|V_{cb}|$ using the baryonic decays $\Lambda_b \rightarrow p \, \mu^- \bar{\nu}_{\mu}$ and $\Lambda_b \rightarrow \Lambda_c \, \mu^- \bar{\nu}_{\mu}$, provided that the relevant $\Lambda_b \rightarrow p$ and $\Lambda_b \rightarrow \Lambda_c \, \mu^- \bar{\nu}_{\mu}$, provided that the relevant $\Lambda_b \rightarrow p$ and $\Lambda_b \rightarrow \Lambda_c$ hadronic form factors can be calculated. In this work, we performed a precise lattice QCD calculation of these form factors, utilizing lattice gauge-field ensembles generated by the RBC and UKQCD Collaborations. Using our form factor results, we can predict the $\Lambda_b \rightarrow p \, \mu^- \bar{\nu}_{\mu}$ and $\Lambda_b \rightarrow \Lambda_c \, \mu^- \bar{\nu}_{\mu}$ differential decay rates as functions of $|V_{ub}|^2$ and $|V_{cb}|^2$, as shown in Fig. 1. The LHCb Collaboration has recently measured the following ratio of the partially integrated decay rates³⁾,

$$\frac{\int_{15 \text{ GeV}^2}^{q^2_{\text{max}}} \frac{d\Gamma(\Lambda_b \to p \ \mu^- \bar{\nu}_\mu)}{dq^2} dq^2}{\int_{7 \text{ GeV}^2}^{q^2_{\text{max}}} \frac{d\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_\mu)}{dq^2} dq^2} = (1.00 \pm 0.09) \times 10^{-2},$$

where the q^2 -ranges were chosen to cover the region of the smallest uncertainties in our lattice QCD predictions. The combination of the LHCb measurement with our calculation gives

- [†] Condensed from the article in Phys. Rev. D **92**, 034503 (2015)
- *1 RIKEN Nishina Center
- $^{\ast 2}$ $\,$ Department of Physics, University of Arizona
- *³ Center for Theoretical Physics, Massachusetts Institute of Technology
- ^{*4} Physics Department, Brookhaven National Laboratory

Fig. 1. Lattice QCD predictions for the $\Lambda_b \to p \, \mu^- \bar{\nu}_{\mu}$ and $\Lambda_b \to \Lambda_c \, \mu^- \bar{\nu}_{\mu}$ differential decay rates. The bands indicate the statistical-only and the total uncertainties.

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 (\text{expt}) \pm 0.004 (\text{lattice}),$$

and, taking the 2014 PDG value for $|V_{cb}|$ from exclusive B decays,

$$|V_{ub}| = (3.27 \pm 0.23) \times 10^{-3}.$$

Because of the nonzero spin of the baryons, this analysis also provides important new constraints on possible right-handed currents beyond the Standard Model, whose existence had been suggested as an explanation of the exclusive-inclusive tension in $|V_{ub}|^{(4)}$. The new measurement strongly disfavors this explanation ³⁾, demonstrating that powerful complementary constraints on physics beyond the Standard Model can be derived from baryonic *b* decays.

References

- K. A. Olive *et al.* [Particle Data Group], Chin. Phys. C 38, 090001 (2014).
- J. A. Bailey *et al.* [SWME Collaboration], Phys. Rev. D **92**, 034510 (2015).
- R. Aaij *et al.* [LHCb Collaboration], Nature Phys. **11**, 743 (2015).
- 4) A. Crivellin, Phys. Rev. D 81, 031301 (2010).