Circulation detector for Rare RI Ring

D. Nagae,^{*1} Y. Abe,^{*1} Y. Yamaguchi,^{*1} F. Suzaki,^{*1,*2} S. Naimi,^{*1} Z. Ge,^{*1,*2} H. Miura,^{*2} S. Ohmika,^{*2}

Y. Takeuchi,^{*2} T. Nishimura,^{*2} N. Tadano,^{*2} I. Kato,^{*2} T. Yamaguchi,^{*2} T. Suzuki,^{*2} Y. Ichikawa,^{*3} Y. Tajiri,^{*3}

K. Hiraishi,^{*3} T. Matsumoto,^{*3} T. Moriguchi,^{*3} S. Suzuki,^{*3} A. Ozawa,^{*3} Y. Yanagisawa,^{*1} H. Suzuki,^{*1} H. Baba,^{*1} S. Michimasa,^{*4} S. Ota,^{*4} H. Miya,^{*4} T. Watanabe,^{*1} M. Wakasugi,^{*1} T. Uesaka,^{*1} and Y. Yano^{*1}

A circulation detector consisting of a carbon foil and a multichannel plate (MCP) has been developed for confirming that particles can be stored and for evaluating the revolution time in the Rare RI Ring^{1} . Although the basic concept of the circulation detector is the same as those developed at GARIS and $Tsukuba^{2}$, and GSI^{3} , an enlargement of the sensitive area is required to cover a large beam profile in the Rare-RI Ring. A schematic view of the detector is shown in Fig. 1. A large and thin carbon foil $(100 \times 50 \text{ mm}^2)$ and 60 μ g/cm²) was developed at RIKEN⁴). A stored particle generates secondary electrons when passing through the carbon foil. Secondary electrons are accelerated by an acceleration electric field $E_{\rm acc}$ applied between the carbon foil and an acceleration grid, and they are then deflected at 90 degree towards the MCP by an electrostatic mirror field $E_{\rm mir}$ applied between two parallel grids. These grids are made of gold-plated tungsten wires with a diameter of 40 μ m. The acceleration field $(E_{\rm acc})$ and the mirror field $(E_{\rm mir})$ are chosen to satisfy the relation $2E_{\rm acc} = E_{\rm mir}$.

The circulation detector was used in the first commissioning experiment where the ⁷⁸K primary beam was used. The detector was used in the same manner in the second commissioning experiment using the secondary beam of ³⁶Ar and ³⁵Cl produced by the fragmentation reaction of a primary beam of ⁴⁸Ca at an energy of 345 MeV/nucleon on a ⁹Be target with a thickness of 25 mm. A circulation time spectrum of 78 Kr is shown in Fig. 2. Particles were successfully stored approximately 60 turns. A revolution frequency was estimated to be 2.639 MHz from the circulation time spectrum. Figures 3(a) and 3(b) are circulation time spectra for ³⁶Ar and ³⁵Cl, respectively. ³⁶Ar ions and

Fig. 1. Schematic view of the circulation detector.

- *2 Department of Physics, Saitama University
- *3 Institute of Physics, University of Tsukuba
- *4Center for Nuclear Study, University of Tokyo

³⁵Cl ions were circulated for approximately 40 turns and 10 turns, respectively. The preliminary revolution times of 378.32(6) ns and 386.3(1) ns were obtained for ³⁶Ar and ³⁵Cl, respectively.

Fig. 2. Circulation time spectrum of ⁷⁸Kr. Noise generated by the kicker magnet is observed at approximately $0.05 \ \mu s.$

Fig. 3. Circulation time spectra of (a) 36 Ar and (b) 35 Cl. Arrows indicate signals corresponding to particles.

References

- 1) A. Ozawa et al., Prog. Theor. Exp. Phys. 03C009 (2012).
- 2) T. Mizota et al., Nucl. Instr. and Meth. A 305, 125 (1991).
- F. Busch et al., Nucl. Instr. and Meth. 171, 71 (1980). 3)
- 4) H. Hasebe et al., RIKEN Accel. Prog. Rep. 42, 133 (2009).

^{*1} **RIKEN** Nishina Center