Study on background suppression of charged particles using GARIS-II filled with He-H₂ mixture

D. Kaji,^{*1} K. Morimoto,^{*1} S. Yamaki,^{*1,*2} H. Haba,^{*1} Y. Komori,^{*1} S. Yano,^{*1} R. Aono,^{*1,*3} Y. Namba,^{*1,*3} and S. Goto^{*1,*3}

The performance of a gas-filled recoil ion separator (GARIS-II) has been evaluated using various asymmetric fusion reactions¹⁻³⁾. The feasibility of a high transmission under a low-background condition is a key issue for superheavy elements (SHEs) produced with a low cross section of pb-order. In previous work¹⁾, it was found that GARIS-II filled with a He-H₂ mixture as a filled gas is promising to suppress background particles. To aid future study of SHEs, the usefulness of a He-H₂ mixture was investigated further in this work. As a typical example, the results for ^{218,217}Pa, which were produced via the reaction of ¹⁹⁷Au(²⁴Mg,xn) [x=3,4], are given here.

The products of 218,217 Pa were separated in-flight from projectiles and other by-products using the GARIS-II, and then they were guided into a double sided silicon detector after passing through a time-offlight detector. The separator was filled with a He-H₂ mixture with various H₂ mixing ratios (0, 10, 20, and 30%). The gas pressure was maintained at 53 Pa. Recently, a new gas-mixing system, shown in Fig. 1, was developed as the previous system used a commercial gas with fixed mixing ratio. This system enables the mixing ratio to be tuned under constant pressure. The system was well calibrated by a gas analyzer.

The reaction products of 218,217 Pa, which were assigned to α -transitions of 9.616 and 8.337 MeV with half-lives of 113 μ s and 3.8 ms respectively as shown in Fig. 2, were measured by varying the fraction of H₂ composition from 0 to 30%. The reaction products of 217,218 Pa including long-lived isotopes of 215,214 Ac

Fig. 1. New gas control system for GARIS-II filled with He-H₂ mixture.

- *² Department of Physics, Saitama University
- *³ Graduate school of Science and Technology, Niigata University

are clearly identifiable with an increasing mixing ratio. The values of the equilibrium charge state \bar{q} , which are deduced from the optimum magnetic rigidity $B\rho$ values, are plotted against the H₂ composition in Fig. 3. The \bar{q} in pure H₂ is estimated to be 3.80 using empirical systematics, obtained using a Dubna gas-filled recoil separator DGFRS⁴). Interpolated values of \bar{q} between 4.47 and 3.80 in the case of pure He and H₂ are indicated as a broken line in Fig. 3. It seems that the measured \bar{q} values agree well with the linear interpolation of the DGFRS.

Fig. 2. Two-dimensional scatter plots, obtained by a timeposition correlation analysis, of decay time against decay energy. Fractions of H₂ composition are (a) 0%, (b) 10%, and (c) 30%.

Fig. 3. Equilibrium charge state of ²¹⁷Pa ions moving in a He-H₂ mixture. The broken line is the linear interpolation between the experimentally obtained \bar{q} of 4.47 and the estimated \bar{q} of 3.80 from the DGFRS's work⁴).

References

- 1) D. Kaji et al., RIKEN Accel. Prog. Rep 48, 214 (2015).
- 2) D. Kaji et al., RIKEN Accel. Prog. Rep 47, 213 (2014).
- 3) D. Kaji et al., RIKEN Accel. Prog. Rep 46, 189 (2013).
- 4) Y.T. Ogganessian et al., Phys. Rev. C64, 064309 (2001).