Low-lying structure of ⁵⁰Ar and the N = 32 subshell closure[†]

D. Steppenbeck,^{*1} S. Takeuchi,^{*2} N. Aoi,^{*3} P. Doornenbal,^{*1} M. Matsushita,^{*4} H. Wang,^{*1} Y. Utsuno,^{*5} H. Baba,^{*1} S. Go,^{*6} J. Lee,^{*7} K. Matsui,^{*8} S. Michimasa,^{*4} T. Motobayashi,^{*1} D. Nishimura,^{*9} T. Otsuka,^{*4,*8} H. Sakurai,^{*1,*8} Y. Shiga,^{*10} N. Shimizu,^{*4} P.-A. Söderström,^{*1} T. Sumikama,^{*1} R. Taniuchi,^{*8}

J. J. Valiente-Dobón,^{*11} and K. Yoneda^{*1}

It is now well known that far from the line of β stability the nuclear magic numbers can change from their standard values. For example, in the pf shell, the onset of a new magic number at N = 32 has been reported along the Cr, Ti, and Ca isotopic chains, while a sizable gap at N = 34 was deduced from the structure of ${}^{54}Ca^{1)}$. Very recently, the persistence of the N = 32 subshell closure was established in systems below the $Z = 20 \text{ core}^{2}$. In the present work, the lowlying structure of ⁵⁰Ar has been investigated to shed light on the character of the N = 32 magic number at more extreme neutron-to-proton ratios. Preliminary results are discussed in $\operatorname{Ref.}^{3)}$.

A primary beam of ⁷⁰Zn³⁰⁺ ions with a typical intensity of ~ 60 pnA was used to generate a fast radioactive beam containing ${}^{54}Ca$, ${}^{55}Sc$, and ${}^{56}Ti$, amongst other products. The constituents were identified using the BigRIPS separator and focused on a 10-mm-thick ⁹Be reaction target at the eighth focal plane. Reaction products emerging from the target were identified by the ZeroDegree spectrometer (ZDS); despite the fact that the ZDS was optimized for the transmission of 54 Ca¹⁾, a sufficient number of 50 Ar ions fell within the acceptance of the spectrometer to extract structural information. The reaction target was surrounded by the DALI2 γ -ray detector array to measure transitions emitted from nuclear excited states.

The γ -ray energy spectra—corrected for the Doppler effect—are presented in Fig. 1 using the sum of the ${}^{9}\text{Be}({}^{54}\text{Ca}, {}^{50}\text{Ar})X, {}^{9}\text{Be}({}^{55}\text{Sc}, {}^{50}\text{Ar})X, \text{ and } {}^{9}\text{Be}({}^{56}\text{Ti},$ ${}^{50}\mathrm{Ar})X$ multinucleon removal reactions. The line at 1178(18) keV, which is the most intense peak in the spectra, is assigned as the transition from the yrast 2^+ state to the 0^+ ground state in ⁵⁰Ar. A weaker, tentative peak is present at 1582(38) keV, and is suggested as the transition between the 4_1^+ and 2_1^+ levels. Statistics were insufficient to confirm the proposed decay scheme using $\gamma\gamma$ coincidence relationships.

- *3 RCNP, University of Osaka *4
- Center for Nuclear Study, University of Tokyo *5
- Japan Atomic Energy Agency
- *6 Dept of Science and Engineering, University of Tennessee
- *7Dept of Physics, University of Hong Kong
- *8 Dept of Physics, University of Tokyo
- *9 Dept of Physics, Tokyo University of Science
- ^{*10} Dept of Physics, Rikkyo University
- $^{\ast 11}$ Laboratori Nazionali di Legnaro

The 2_1^+ state in 50 Ar indicates an increase in energy relative to its even-even neighbour ⁴⁸Ar and, therefore, naively suggests the presence of a sizable subshell closure at N = 32 in Ar isotopes. In order to investigate the nature of the increase in energy in more detail, large-scale shell-model calculations employing a modified version of the SDPF-MU Hamiltonian⁴⁾ were performed; the modifications were based on recent experimental data from exotic Ca^{1} and K^{5} isotopes. The predictions reproduce the experimental energy levels in lighter Ar isotopes, and the results of the present work, in a satisfactory manner. Moreover, the calculations indicate that the magnitude of the N = 32subshell closure in 50 Ar is equally as significant as the gaps in ⁵²Ca and ⁵⁴Ti, where the experimental evidence for this magic number is well documented. The calculations also indicate a rather high 2^+_1 energy in ⁵²Ar and, therefore, experimental input on this nucleus is encouraged to investigate the significance of the N = 34 subshell closure in more exotic systems.

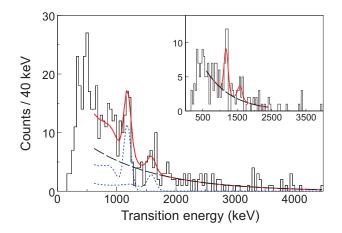


Fig. 1. (colour) Doppler-corrected γ -ray energy spectra for ⁵⁰Ar. The main and inset panels display $M_{\gamma} \geq 1$ and $M_{\gamma} \leq 3$ data, respectively. The black dashed lines are exponential fits to the backgrounds and the blue dashed lines are GEANT4 simulations; the solid red lines are total (sum) fits.

References

- 1) D. Steppenbeck et al. Nature 502, 207 (2013).
- 2) M. Rosenbusch et al. Phys. Rev. Lett. 114, 202501 (2015).
- 3) D. Steppenbeck et al. JPS Conf. Proc. 6, 020019 (2015).
- 4) Y. Utsuno et al. Phys. Rev. C 86, 051301(R) (2012).
- 5) J. Papuga et al. Phys. Rev. Lett. 110, 172503 (2013).

Condensed from the article in Phys. Rev. Lett. 114, 252501 (2015).

RIKEN Nishina Center

^{*2} Dept of Physics, Tokyo Institute of Technology