Production of 67 Cu using the 70 Zn(*d*,*an*) 67 Cu reaction

S. Yano, *1 H. Haba, *1 S. Shibata, *1 Y. Komori, *1 K. Takahashi, *1 Y. Wakitani, *2 T. Yamada, *2 and M. Matsumoto *2

Since 2007, we have distributed purified radioisotopes such as ⁶⁵Zn and ¹⁰⁹Cd prepared at the RIKEN AVF cyclotron for the purpose of contribution to society throughout industrial application of accelerator based- science.¹⁾ Copper-67 (half-life $T_{1/2} = 61.83$ h and β^- -decay branch $I_{\beta^-} = 100\%$) is one of the promising radioisotopes for radiotherapy and radiodiagnosis.2) Although several routes have been proposed for the production of ⁶⁷Cu, the high-energy protoninduced reaction of ${}^{68}Zn(p,2p){}^{67}Cu$ has been used most often.³⁾ In this route, however, a large-scale cyclotron is required to accelerate protons up to ~ 100 MeV, and a large contamination of the radionuclidic impurity of ⁶⁴Cu is unavoidable in the 67Cu product.3) Further, the long-lived byproduct of 65 Zn ($T_{1/2} = 244.06$ d) is also undesired in the recycle process of the enriched target material of ⁶⁸Zn. Thus, we plan to produce 67 Cu in the 70 Zn(d,an) 67 Cu reaction, where small amounts of ⁶⁴Cu and ⁶⁵Zn are produced.⁴⁾ In this work, for the future distribution of ⁶⁷Cu, we investigated a procedure to prepare purified ⁶⁷Cu in the ⁷⁰Zn $(d,\alpha n)^{67}$ Cu reaction at the AVF cyclotron.

In the 70 Zn $(d, \alpha n)$ 67 Cu route, 67 Ga can be produced from Zn isotopes such as ⁶⁶Zn and ⁶⁷Zn, which are contained in small amounts in the enriched ⁷⁰Zn target. The γ -ray energies of ⁶⁷Ga are identical to those of ⁶⁷Cu, because ⁶⁷Ga and ⁶⁷Cu decay to the same excited levels of 67 Zn by EC- and β^- -decay, respectively. In addition, the half-life of 67 Ga ($T_{1/2} = 3.26$ d) is almost the same as that of ⁶⁷Cu. Thus, it is difficult to distinguish between ⁶⁷Cu and ⁶⁷Ga by γ -ray spectrometry. Also the expensive enriched isotope of ⁷⁰Zn should be recovered for reuse. To develop a chemical procedure to remove ⁶⁷Ga from ⁶⁷Cu and to recover the rare ⁷⁰Zn material, we first produced radiotracers of 61Cu, 66Ga, and 69mZn in the natZn(d,X) reactions by irradiating 24-MeV deuterons on a metallic natZn foil (nat: natural isotopic abundance; chemical purity: >99.99%; thickness: 71.4 mg cm⁻²). The average beam intensity was 150 nA, and the irradiation time was 26 min. An enriched ⁷⁰ZnO target (⁷⁰Zn isotopic abundance: 96.87%; thickness: 327 mg cm⁻²) was also irradiated with the 24-MeV deuterons in order to evaluate the production yield of ⁶⁷Cu from ⁷⁰Zn and the quality of the purified ⁶⁷Cu product. The average beam intensity was 18 nA, and the irradiation time was 56 min. After the irradiation, as shown in Fig. 1, Cu isotopes were separated from the ^{nat}Zn and ⁷⁰ZnO targets through a two-step chromatographic separation using the Eichrom Cu resin and the Dowex 1X8 anion-exchange resin.⁵⁾ We carried out the chemical procedure using the radiotracers of 61Cu, 66Ga, and 69mZn produced in the ^{nat}Zn(d,X) reaction. A high chemical yield of 97% was obtained for 61Cu. Decontamination factors of 66Ga and 69mZn

from ⁶¹Cu were evaluated to be~10³ and >10³,respectively. The recovery of >99% for ^{69m}Zn, was high enough for recycling of the ⁷⁰Zn target material. Figure 2 shows the γ -ray spectrum of the purified ⁶⁷Cu from the enriched ⁷⁰Zn target. Under the present experimental condition, the production yield of ⁶⁷Cu was 4.0 MBq μ A⁻¹h⁻¹. The radioactivity ratio of $A(^{67}$ Cu)/ $A(^{67}$ Ga) was about 2×10⁴ after the chemical separation. Based on the present results, we estimate that about 1 GBq of ⁶⁷Cu could be distributed after 3-days irradiation of a metallic ⁷⁰Zn target of 357-mg cm⁻² thickness with a 24-MeV and 10- μ A deuteron beam, followed by 3 days for chemical separation and shipment.

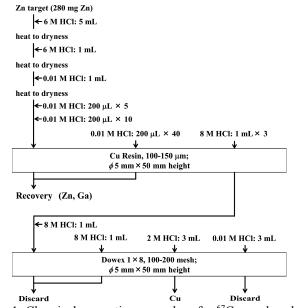


Fig. 1. Chemical separation procedure for 67 Cu produced in the 70 Zn(*d*, αn) 67 Cu reaction.

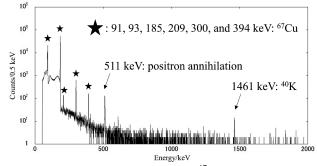


Fig. 2. γ -ray spectrum of the purified ⁶⁷Cu from the enriched ⁷⁰Zn target irradiated with the 24-MeV deuteron.

References

- 1) T. Kambara et al., RIKEN Accel. Prog. Rep. 42, 295 (2008).
- 2) I. Novak-Hofer et al., Eur. J. Nucl. Med. 29, 821 (2002).
- 3) IAEA Technical Reports Series 473 (2011).
- 4) J. Kozempel et al., Radiochim. Acta. 100, 419 (2012).
- 5) Eichrom technologies' Product Catalog for 2013.

^{*1} RIKEN Nishina Center

^{*2} Japan Radioisotope Association